OpenCV  5.0.0-pre
Open Source Computer Vision
Loading...
Searching...
No Matches
Public Member Functions | List of all members

Abstract base class for 2D image feature detectors and descriptor extractors. More...

#include <opencv2/features.hpp>

Collaboration diagram for cv::Feature2D:

Public Member Functions

virtual ~Feature2D ()
 
virtual void compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors)
 Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).
 
virtual void compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors)
 
virtual int defaultNorm () const
 
virtual int descriptorSize () const
 
virtual int descriptorType () const
 
virtual void detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray())
 Detects keypoints in an image (first variant) or image set (second variant).
 
virtual void detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray())
 
virtual void detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false)
 
virtual bool empty () const CV_OVERRIDE
 Return true if detector object is empty.
 
virtual String getDefaultName () const CV_OVERRIDE
 
virtual void read (const FileNode &) CV_OVERRIDE
 Reads algorithm parameters from a file storage.
 
void read (const String &fileName)
 
void write (const String &fileName) const
 
virtual void write (FileStorage &) const CV_OVERRIDE
 Stores algorithm parameters in a file storage.
 
void write (FileStorage &fs, const String &name) const
 
- Public Member Functions inherited from cv::Algorithm
 Algorithm ()
 
virtual ~Algorithm ()
 
virtual void clear ()
 Clears the algorithm state.
 
virtual void save (const String &filename) const
 
void write (const Ptr< FileStorage > &fs, const String &name=String()) const
 
void write (FileStorage &fs, const String &name) const
 

Additional Inherited Members

- Static Public Member Functions inherited from cv::Algorithm
template<typename _Tp >
static Ptr< _Tpload (const String &filename, const String &objname=String())
 Loads algorithm from the file.
 
template<typename _Tp >
static Ptr< _TploadFromString (const String &strModel, const String &objname=String())
 Loads algorithm from a String.
 
template<typename _Tp >
static Ptr< _Tpread (const FileNode &fn)
 Reads algorithm from the file node.
 
- Protected Member Functions inherited from cv::Algorithm
void writeFormat (FileStorage &fs) const
 

Detailed Description

Abstract base class for 2D image feature detectors and descriptor extractors.

Constructor & Destructor Documentation

◆ ~Feature2D()

virtual cv::Feature2D::~Feature2D ( )
virtual

Member Function Documentation

◆ compute() [1/2]

virtual void cv::Feature2D::compute ( InputArray  image,
std::vector< KeyPoint > &  keypoints,
OutputArray  descriptors 
)
virtual
Python:
cv.Feature2D.compute(image, keypoints[, descriptors]) -> keypoints, descriptors
cv.Feature2D.compute(images, keypoints[, descriptors]) -> keypoints, descriptors

Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).

Parameters
imageImage.
keypointsInput collection of keypoints. Keypoints for which a descriptor cannot be computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint with several dominant orientations (for each orientation).
descriptorsComputed descriptors. In the second variant of the method descriptors[i] are descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the descriptor for keypoint j-th keypoint.

Reimplemented in cv::xfeatures2d::DAISY.

◆ compute() [2/2]

virtual void cv::Feature2D::compute ( InputArrayOfArrays  images,
std::vector< std::vector< KeyPoint > > &  keypoints,
OutputArrayOfArrays  descriptors 
)
virtual
Python:
cv.Feature2D.compute(image, keypoints[, descriptors]) -> keypoints, descriptors
cv.Feature2D.compute(images, keypoints[, descriptors]) -> keypoints, descriptors

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
imagesImage set.
keypointsInput collection of keypoints. Keypoints for which a descriptor cannot be computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint with several dominant orientations (for each orientation).
descriptorsComputed descriptors. In the second variant of the method descriptors[i] are descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the descriptor for keypoint j-th keypoint.

Reimplemented in cv::xfeatures2d::DAISY.

◆ defaultNorm()

virtual int cv::Feature2D::defaultNorm ( ) const
virtual
Python:
cv.Feature2D.defaultNorm() -> retval

◆ descriptorSize()

virtual int cv::Feature2D::descriptorSize ( ) const
virtual
Python:
cv.Feature2D.descriptorSize() -> retval

◆ descriptorType()

virtual int cv::Feature2D::descriptorType ( ) const
virtual
Python:
cv.Feature2D.descriptorType() -> retval

◆ detect() [1/2]

virtual void cv::Feature2D::detect ( InputArray  image,
std::vector< KeyPoint > &  keypoints,
InputArray  mask = noArray() 
)
virtual
Python:
cv.Feature2D.detect(image[, mask]) -> keypoints
cv.Feature2D.detect(images[, masks]) -> keypoints

Detects keypoints in an image (first variant) or image set (second variant).

Parameters
imageImage.
keypointsThe detected keypoints. In the second variant of the method keypoints[i] is a set of keypoints detected in images[i] .
maskMask specifying where to look for keypoints (optional). It must be a 8-bit integer matrix with non-zero values in the region of interest.

Reimplemented in cv::xfeatures2d::AffineFeature2D.

Examples
samples/cpp/snippets/detect_blob.cpp.
Here is the call graph for this function:

◆ detect() [2/2]

virtual void cv::Feature2D::detect ( InputArrayOfArrays  images,
std::vector< std::vector< KeyPoint > > &  keypoints,
InputArrayOfArrays  masks = noArray() 
)
virtual
Python:
cv.Feature2D.detect(image[, mask]) -> keypoints
cv.Feature2D.detect(images[, masks]) -> keypoints

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
imagesImage set.
keypointsThe detected keypoints. In the second variant of the method keypoints[i] is a set of keypoints detected in images[i] .
masksMasks for each input image specifying where to look for keypoints (optional). masks[i] is a mask for images[i].

Reimplemented in cv::xfeatures2d::AffineFeature2D.

Here is the call graph for this function:

◆ detectAndCompute()

virtual void cv::Feature2D::detectAndCompute ( InputArray  image,
InputArray  mask,
std::vector< KeyPoint > &  keypoints,
OutputArray  descriptors,
bool  useProvidedKeypoints = false 
)
virtual
Python:
cv.Feature2D.detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

Detects keypoints and computes the descriptors

Reimplemented in cv::xfeatures2d::AffineFeature2D.

◆ empty()

virtual bool cv::Feature2D::empty ( ) const
virtual
Python:
cv.Feature2D.empty() -> retval

Return true if detector object is empty.

Reimplemented from cv::Algorithm.

◆ getDefaultName()

virtual String cv::Feature2D::getDefaultName ( ) const
virtual
Python:
cv.Feature2D.getDefaultName() -> retval

◆ read() [1/2]

virtual void cv::Feature2D::read ( const FileNode fn)
virtual
Python:
cv.Feature2D.read(fileName) -> None
cv.Feature2D.read(arg1) -> None

Reads algorithm parameters from a file storage.

Reimplemented from cv::Algorithm.

◆ read() [2/2]

void cv::Feature2D::read ( const String fileName)
Python:
cv.Feature2D.read(fileName) -> None
cv.Feature2D.read(arg1) -> None

◆ write() [1/3]

void cv::Feature2D::write ( const String fileName) const
Python:
cv.Feature2D.write(fileName) -> None
cv.Feature2D.write(fs, name) -> None

◆ write() [2/3]

virtual void cv::Feature2D::write ( FileStorage fs) const
virtual
Python:
cv.Feature2D.write(fileName) -> None
cv.Feature2D.write(fs, name) -> None

Stores algorithm parameters in a file storage.

Reimplemented from cv::Algorithm.

◆ write() [3/3]

void cv::Feature2D::write ( FileStorage fs,
const String name 
) const
inline
Python:
cv.Feature2D.write(fileName) -> None
cv.Feature2D.write(fs, name) -> None

The documentation for this class was generated from the following file: