OpenCV 5.0.0-pre
Open Source Computer Vision
Loading...
Searching...
No Matches
cv::xfeatures2d::SURF Class Referenceabstract

Class for extracting Speeded Up Robust Features from an image [20] . More...

#include <opencv2/xfeatures2d/nonfree.hpp>

Collaboration diagram for cv::xfeatures2d::SURF:

Public Member Functions

String getDefaultName () const CV_OVERRIDE
 
virtual bool getExtended () const =0
 
virtual double getHessianThreshold () const =0
 
virtual int getNOctaveLayers () const =0
 
virtual int getNOctaves () const =0
 
virtual bool getUpright () const =0
 
virtual void setExtended (bool extended)=0
 
virtual void setHessianThreshold (double hessianThreshold)=0
 
virtual void setNOctaveLayers (int nOctaveLayers)=0
 
virtual void setNOctaves (int nOctaves)=0
 
virtual void setUpright (bool upright)=0
 
- Public Member Functions inherited from cv::Feature2D
virtual ~Feature2D ()
 
virtual void compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors)
 Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).
 
virtual void compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors)
 
virtual int defaultNorm () const
 
virtual int descriptorSize () const
 
virtual int descriptorType () const
 
virtual void detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray())
 Detects keypoints in an image (first variant) or image set (second variant).
 
virtual void detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray())
 
virtual void detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false)
 
virtual bool empty () const CV_OVERRIDE
 Return true if detector object is empty.
 
virtual void read (const FileNode &) CV_OVERRIDE
 Reads algorithm parameters from a file storage.
 
void read (const String &fileName)
 
void write (const String &fileName) const
 
virtual void write (FileStorage &) const CV_OVERRIDE
 Stores algorithm parameters in a file storage.
 
void write (FileStorage &fs, const String &name) const
 
- Public Member Functions inherited from cv::Algorithm
 Algorithm ()
 
virtual ~Algorithm ()
 
virtual void clear ()
 Clears the algorithm state.
 
virtual void save (const String &filename) const
 
void write (FileStorage &fs, const String &name) const
 

Static Public Member Functions

static Ptr< SURFcreate (double hessianThreshold=100, int nOctaves=4, int nOctaveLayers=3, bool extended=false, bool upright=false)
 
- Static Public Member Functions inherited from cv::Algorithm
template<typename _Tp >
static Ptr< _Tpload (const String &filename, const String &objname=String())
 Loads algorithm from the file.
 
template<typename _Tp >
static Ptr< _TploadFromString (const String &strModel, const String &objname=String())
 Loads algorithm from a String.
 
template<typename _Tp >
static Ptr< _Tpread (const FileNode &fn)
 Reads algorithm from the file node.
 

Additional Inherited Members

- Protected Member Functions inherited from cv::Algorithm
void writeFormat (FileStorage &fs) const
 

Detailed Description

Class for extracting Speeded Up Robust Features from an image [20] .

The algorithm parameters:

  • member int extended
    • 0 means that the basic descriptors (64 elements each) shall be computed
    • 1 means that the extended descriptors (128 elements each) shall be computed
  • member int upright
    • 0 means that detector computes orientation of each feature.
    • 1 means that the orientation is not computed (which is much, much faster). For example, if you match images from a stereo pair, or do image stitching, the matched features likely have very similar angles, and you can speed up feature extraction by setting upright=1.
  • member double hessianThreshold Threshold for the keypoint detector. Only features, whose hessian is larger than hessianThreshold are retained by the detector. Therefore, the larger the value, the less keypoints you will get. A good default value could be from 300 to 500, depending from the image contrast.
  • member int nOctaves The number of a gaussian pyramid octaves that the detector uses. It is set to 4 by default. If you want to get very large features, use the larger value. If you want just small features, decrease it.
  • member int nOctaveLayers The number of images within each octave of a gaussian pyramid. It is set to 2 by default.
    Note
    • An example using the SURF feature detector can be found at opencv_source_code/samples/cpp/generic_descriptor_match.cpp
      • Another example using the SURF feature detector, extractor and matcher can be found at opencv_source_code/samples/cpp/matcher_simple.cpp

Member Function Documentation

◆ create()

static Ptr< SURF > cv::xfeatures2d::SURF::create ( double hessianThreshold = 100,
int nOctaves = 4,
int nOctaveLayers = 3,
bool extended = false,
bool upright = false )
static
Python:
cv.xfeatures2d.SURF.create([, hessianThreshold[, nOctaves[, nOctaveLayers[, extended[, upright]]]]]) -> retval
cv.xfeatures2d.SURF_create([, hessianThreshold[, nOctaves[, nOctaveLayers[, extended[, upright]]]]]) -> retval
Parameters
hessianThresholdThreshold for hessian keypoint detector used in SURF.
nOctavesNumber of pyramid octaves the keypoint detector will use.
nOctaveLayersNumber of octave layers within each octave.
extendedExtended descriptor flag (true - use extended 128-element descriptors; false - use 64-element descriptors).
uprightUp-right or rotated features flag (true - do not compute orientation of features; false - compute orientation).

◆ getDefaultName()

String cv::xfeatures2d::SURF::getDefaultName ( ) const
virtual
Python:
cv.xfeatures2d.SURF.getDefaultName() -> retval

Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.

Reimplemented from cv::Feature2D.

◆ getExtended()

virtual bool cv::xfeatures2d::SURF::getExtended ( ) const
pure virtual
Python:
cv.xfeatures2d.SURF.getExtended() -> retval

◆ getHessianThreshold()

virtual double cv::xfeatures2d::SURF::getHessianThreshold ( ) const
pure virtual
Python:
cv.xfeatures2d.SURF.getHessianThreshold() -> retval

◆ getNOctaveLayers()

virtual int cv::xfeatures2d::SURF::getNOctaveLayers ( ) const
pure virtual
Python:
cv.xfeatures2d.SURF.getNOctaveLayers() -> retval

◆ getNOctaves()

virtual int cv::xfeatures2d::SURF::getNOctaves ( ) const
pure virtual
Python:
cv.xfeatures2d.SURF.getNOctaves() -> retval

◆ getUpright()

virtual bool cv::xfeatures2d::SURF::getUpright ( ) const
pure virtual
Python:
cv.xfeatures2d.SURF.getUpright() -> retval

◆ setExtended()

virtual void cv::xfeatures2d::SURF::setExtended ( bool extended)
pure virtual
Python:
cv.xfeatures2d.SURF.setExtended(extended) -> None

◆ setHessianThreshold()

virtual void cv::xfeatures2d::SURF::setHessianThreshold ( double hessianThreshold)
pure virtual
Python:
cv.xfeatures2d.SURF.setHessianThreshold(hessianThreshold) -> None

◆ setNOctaveLayers()

virtual void cv::xfeatures2d::SURF::setNOctaveLayers ( int nOctaveLayers)
pure virtual
Python:
cv.xfeatures2d.SURF.setNOctaveLayers(nOctaveLayers) -> None

◆ setNOctaves()

virtual void cv::xfeatures2d::SURF::setNOctaves ( int nOctaves)
pure virtual
Python:
cv.xfeatures2d.SURF.setNOctaves(nOctaves) -> None

◆ setUpright()

virtual void cv::xfeatures2d::SURF::setUpright ( bool upright)
pure virtual
Python:
cv.xfeatures2d.SURF.setUpright(upright) -> None

The documentation for this class was generated from the following file: