Wrapping class for feature detection using the FAST method.
More...
#include <opencv2/features.hpp>
|
virtual String | getDefaultName () const CV_OVERRIDE |
|
virtual bool | getNonmaxSuppression () const =0 |
|
virtual int | getThreshold () const =0 |
|
virtual FastFeatureDetector::DetectorType | getType () const =0 |
|
virtual void | setNonmaxSuppression (bool f)=0 |
|
virtual void | setThreshold (int threshold)=0 |
|
virtual void | setType (FastFeatureDetector::DetectorType type)=0 |
|
virtual | ~Feature2D () |
|
virtual void | compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors) |
| Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).
|
|
virtual void | compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) |
|
virtual int | defaultNorm () const |
|
virtual int | descriptorSize () const |
|
virtual int | descriptorType () const |
|
virtual void | detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray()) |
| Detects keypoints in an image (first variant) or image set (second variant).
|
|
virtual void | detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray()) |
|
virtual void | detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false) |
|
virtual bool | empty () const CV_OVERRIDE |
| Return true if detector object is empty.
|
|
virtual void | read (const FileNode &) CV_OVERRIDE |
| Reads algorithm parameters from a file storage.
|
|
void | read (const String &fileName) |
|
void | write (const String &fileName) const |
|
virtual void | write (FileStorage &) const CV_OVERRIDE |
| Stores algorithm parameters in a file storage.
|
|
void | write (FileStorage &fs, const String &name) const |
|
| Algorithm () |
|
virtual | ~Algorithm () |
|
virtual void | clear () |
| Clears the algorithm state.
|
|
virtual void | save (const String &filename) const |
|
void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
|
void | write (FileStorage &fs, const String &name) const |
|
Wrapping class for feature detection using the FAST method.
Check the corresponding tutorial for more details.
◆ anonymous enum
Enumerator |
---|
THRESHOLD | |
NONMAX_SUPPRESSION | |
FAST_N | |
◆ DetectorType
Enumerator |
---|
TYPE_5_8 | |
TYPE_7_12 | |
TYPE_9_16 | |
◆ create()
Python: |
---|
| cv.FastFeatureDetector.create( | [, threshold[, nonmaxSuppression[, type]]] | ) -> | retval |
| cv.FastFeatureDetector_create( | [, threshold[, nonmaxSuppression[, type]]] | ) -> | retval |
◆ getDefaultName()
virtual String cv::FastFeatureDetector::getDefaultName |
( |
| ) |
const |
|
virtual |
Python: |
---|
| cv.FastFeatureDetector.getDefaultName( | | ) -> | retval |
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Reimplemented from cv::Feature2D.
◆ getNonmaxSuppression()
virtual bool cv::FastFeatureDetector::getNonmaxSuppression |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.FastFeatureDetector.getNonmaxSuppression( | | ) -> | retval |
◆ getThreshold()
virtual int cv::FastFeatureDetector::getThreshold |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.FastFeatureDetector.getThreshold( | | ) -> | retval |
◆ getType()
Python: |
---|
| cv.FastFeatureDetector.getType( | | ) -> | retval |
◆ setNonmaxSuppression()
virtual void cv::FastFeatureDetector::setNonmaxSuppression |
( |
bool |
f | ) |
|
|
pure virtual |
Python: |
---|
| cv.FastFeatureDetector.setNonmaxSuppression( | f | ) -> | None |
◆ setThreshold()
virtual void cv::FastFeatureDetector::setThreshold |
( |
int |
threshold | ) |
|
|
pure virtual |
Python: |
---|
| cv.FastFeatureDetector.setThreshold( | threshold | ) -> | None |
◆ setType()
Python: |
---|
| cv.FastFeatureDetector.setType( | type | ) -> | None |
The documentation for this class was generated from the following file: