Package org.opencv.dnn
Class TextDetectionModel
- java.lang.Object
- 
- org.opencv.dnn.Model
- 
- org.opencv.dnn.TextDetectionModel
 
 
- 
- Direct Known Subclasses:
- TextDetectionModel_DB,- TextDetectionModel_EAST
 
 public class TextDetectionModel extends Model Base class for text detection networks
- 
- 
Constructor SummaryConstructors Modifier Constructor Description protectedTextDetectionModel(long addr)
 - 
Method SummaryAll Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static TextDetectionModel__fromPtr__(long addr)voiddetect(Mat frame, java.util.List<MatOfPoint> detections)voiddetect(Mat frame, java.util.List<MatOfPoint> detections, MatOfFloat confidences)Performs detection Given the inputframe, prepare network input, run network inference, post-process network output and return result detections.voiddetectTextRectangles(Mat frame, MatOfRotatedRect detections)voiddetectTextRectangles(Mat frame, MatOfRotatedRect detections, MatOfFloat confidences)Performs detection Given the inputframe, prepare network input, run network inference, post-process network output and return result detections.protected voidfinalize()- 
Methods inherited from class org.opencv.dnn.ModelenableWinograd, getNativeObjAddr, predict, setInputCrop, setInputMean, setInputParams, setInputParams, setInputParams, setInputParams, setInputParams, setInputParams, setInputScale, setInputSize, setInputSize, setInputSwapRB, setPreferableBackend, setPreferableTarget
 
- 
 
- 
- 
- 
Method Detail- 
__fromPtr__public static TextDetectionModel __fromPtr__(long addr) 
 - 
detectpublic void detect(Mat frame, java.util.List<MatOfPoint> detections, MatOfFloat confidences) Performs detection Given the inputframe, prepare network input, run network inference, post-process network output and return result detections. Each result is quadrangle's 4 points in this order: - bottom-left - top-left - top-right - bottom-right Use cv::getPerspectiveTransform function to retrieve image region without perspective transformations. Note: If DL model doesn't support that kind of output then result may be derived from detectTextRectangles() output.- Parameters:
- frame- The input image
- detections- array with detections' quadrangles (4 points per result)
- confidences- array with detection confidences
 
 - 
detectpublic void detect(Mat frame, java.util.List<MatOfPoint> detections) 
 - 
detectTextRectanglespublic void detectTextRectangles(Mat frame, MatOfRotatedRect detections, MatOfFloat confidences) Performs detection Given the inputframe, prepare network input, run network inference, post-process network output and return result detections. Each result is rotated rectangle. Note: Result may be inaccurate in case of strong perspective transformations.- Parameters:
- frame- the input image
- detections- array with detections' RotationRect results
- confidences- array with detection confidences
 
 - 
detectTextRectanglespublic void detectTextRectangles(Mat frame, MatOfRotatedRect detections) 
 
- 
 
-