public class DescriptorMatcher extends Algorithm
| Modifier and Type | Field and Description | 
|---|---|
| static int | BRUTEFORCE | 
| static int | BRUTEFORCE_HAMMING | 
| static int | BRUTEFORCE_HAMMINGLUT | 
| static int | BRUTEFORCE_L1 | 
| static int | BRUTEFORCE_SL2 | 
| static int | FLANNBASED | 
| Modifier | Constructor and Description | 
|---|---|
| protected  | DescriptorMatcher(long addr) | 
| Modifier and Type | Method and Description | 
|---|---|
| static DescriptorMatcher | __fromPtr__(long addr) | 
| void | add(List<Mat> descriptors)Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
     collection. | 
| void | clear()Clears the train descriptor collections. | 
| DescriptorMatcher | clone()Clones the matcher. | 
| DescriptorMatcher | clone(boolean emptyTrainData)Clones the matcher. | 
| static DescriptorMatcher | create(int matcherType) | 
| static DescriptorMatcher | create(String descriptorMatcherType)Creates a descriptor matcher of a given type with the default parameters (using default
     constructor). | 
| boolean | empty()Returns true if there are no train descriptors in the both collections. | 
| protected void | finalize() | 
| List<Mat> | getTrainDescriptors()Returns a constant link to the train descriptor collection trainDescCollection . | 
| boolean | isMaskSupported()Returns true if the descriptor matcher supports masking permissible matches. | 
| void | knnMatch(Mat queryDescriptors,
        List<MatOfDMatch> matches,
        int k) | 
| void | knnMatch(Mat queryDescriptors,
        List<MatOfDMatch> matches,
        int k,
        List<Mat> masks) | 
| void | knnMatch(Mat queryDescriptors,
        List<MatOfDMatch> matches,
        int k,
        List<Mat> masks,
        boolean compactResult) | 
| void | knnMatch(Mat queryDescriptors,
        Mat trainDescriptors,
        List<MatOfDMatch> matches,
        int k)Finds the k best matches for each descriptor from a query set. | 
| void | knnMatch(Mat queryDescriptors,
        Mat trainDescriptors,
        List<MatOfDMatch> matches,
        int k,
        Mat mask)Finds the k best matches for each descriptor from a query set. | 
| void | knnMatch(Mat queryDescriptors,
        Mat trainDescriptors,
        List<MatOfDMatch> matches,
        int k,
        Mat mask,
        boolean compactResult)Finds the k best matches for each descriptor from a query set. | 
| void | match(Mat queryDescriptors,
     Mat trainDescriptors,
     MatOfDMatch matches)Finds the best match for each descriptor from a query set. | 
| void | match(Mat queryDescriptors,
     Mat trainDescriptors,
     MatOfDMatch matches,
     Mat mask)Finds the best match for each descriptor from a query set. | 
| void | match(Mat queryDescriptors,
     MatOfDMatch matches) | 
| void | match(Mat queryDescriptors,
     MatOfDMatch matches,
     List<Mat> masks) | 
| void | radiusMatch(Mat queryDescriptors,
           List<MatOfDMatch> matches,
           float maxDistance) | 
| void | radiusMatch(Mat queryDescriptors,
           List<MatOfDMatch> matches,
           float maxDistance,
           List<Mat> masks) | 
| void | radiusMatch(Mat queryDescriptors,
           List<MatOfDMatch> matches,
           float maxDistance,
           List<Mat> masks,
           boolean compactResult) | 
| void | radiusMatch(Mat queryDescriptors,
           Mat trainDescriptors,
           List<MatOfDMatch> matches,
           float maxDistance)For each query descriptor, finds the training descriptors not farther than the specified distance. | 
| void | radiusMatch(Mat queryDescriptors,
           Mat trainDescriptors,
           List<MatOfDMatch> matches,
           float maxDistance,
           Mat mask)For each query descriptor, finds the training descriptors not farther than the specified distance. | 
| void | radiusMatch(Mat queryDescriptors,
           Mat trainDescriptors,
           List<MatOfDMatch> matches,
           float maxDistance,
           Mat mask,
           boolean compactResult)For each query descriptor, finds the training descriptors not farther than the specified distance. | 
| void | read(String fileName) | 
| void | train()Trains a descriptor matcher
     Trains a descriptor matcher (for example, the flann index). | 
| void | write(String fileName) | 
getDefaultName, getNativeObjAddr, savepublic static final int FLANNBASED
public static final int BRUTEFORCE
public static final int BRUTEFORCE_L1
public static final int BRUTEFORCE_HAMMING
public static final int BRUTEFORCE_HAMMINGLUT
public static final int BRUTEFORCE_SL2
public static DescriptorMatcher __fromPtr__(long addr)
public DescriptorMatcher clone(boolean emptyTrainData)
emptyTrainData - If emptyTrainData is false, the method creates a deep copy of the object,
     that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
     object copy with the current parameters but with empty train data.public DescriptorMatcher clone()
public static DescriptorMatcher create(int matcherType)
public static DescriptorMatcher create(String descriptorMatcherType)
descriptorMatcherType - Descriptor matcher type. Now the following matcher types are
     supported:
 BruteForce (it uses L2 )
   BruteForce-L1
   BruteForce-Hamming
   BruteForce-Hamming(2)
   FlannBased
   public boolean empty()
public boolean isMaskSupported()
public List<Mat> getTrainDescriptors()
public void add(List<Mat> descriptors)
descriptors - Descriptors to add. Each descriptors[i] is a set of descriptors from the same
     train image.public void clear()
public void knnMatch(Mat queryDescriptors, Mat trainDescriptors, List<MatOfDMatch> matches, int k, Mat mask, boolean compactResult)
queryDescriptors - Query set of descriptors.trainDescriptors - Train set of descriptors. This set is not added to the train descriptors
     collection stored in the class object.mask - Mask specifying permissible matches between an input query and train matrices of
     descriptors.matches - Matches. Each matches[i] is k or less matches for the same query descriptor.k - Count of best matches found per each query descriptor or less if a query descriptor has
     less than k possible matches in total.compactResult - Parameter used when the mask (or masks) is not empty. If compactResult is
     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
     the matches vector does not contain matches for fully masked-out query descriptors.
     These extended variants of DescriptorMatcher::match methods find several best matches for each query
     descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
     for the details about query and train descriptors.public void knnMatch(Mat queryDescriptors, Mat trainDescriptors, List<MatOfDMatch> matches, int k, Mat mask)
queryDescriptors - Query set of descriptors.trainDescriptors - Train set of descriptors. This set is not added to the train descriptors
     collection stored in the class object.mask - Mask specifying permissible matches between an input query and train matrices of
     descriptors.matches - Matches. Each matches[i] is k or less matches for the same query descriptor.k - Count of best matches found per each query descriptor or less if a query descriptor has
     less than k possible matches in total.
     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
     the matches vector does not contain matches for fully masked-out query descriptors.
     These extended variants of DescriptorMatcher::match methods find several best matches for each query
     descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
     for the details about query and train descriptors.public void knnMatch(Mat queryDescriptors, Mat trainDescriptors, List<MatOfDMatch> matches, int k)
queryDescriptors - Query set of descriptors.trainDescriptors - Train set of descriptors. This set is not added to the train descriptors
     collection stored in the class object.
     descriptors.matches - Matches. Each matches[i] is k or less matches for the same query descriptor.k - Count of best matches found per each query descriptor or less if a query descriptor has
     less than k possible matches in total.
     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
     the matches vector does not contain matches for fully masked-out query descriptors.
     These extended variants of DescriptorMatcher::match methods find several best matches for each query
     descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
     for the details about query and train descriptors.public void knnMatch(Mat queryDescriptors, List<MatOfDMatch> matches, int k, List<Mat> masks, boolean compactResult)
queryDescriptors - Query set of descriptors.matches - Matches. Each matches[i] is k or less matches for the same query descriptor.k - Count of best matches found per each query descriptor or less if a query descriptor has
     less than k possible matches in total.masks - Set of masks. Each masks[i] specifies permissible matches between the input query
     descriptors and stored train descriptors from the i-th image trainDescCollection[i].compactResult - Parameter used when the mask (or masks) is not empty. If compactResult is
     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
     the matches vector does not contain matches for fully masked-out query descriptors.public void knnMatch(Mat queryDescriptors, List<MatOfDMatch> matches, int k, List<Mat> masks)
queryDescriptors - Query set of descriptors.matches - Matches. Each matches[i] is k or less matches for the same query descriptor.k - Count of best matches found per each query descriptor or less if a query descriptor has
     less than k possible matches in total.masks - Set of masks. Each masks[i] specifies permissible matches between the input query
     descriptors and stored train descriptors from the i-th image trainDescCollection[i].
     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
     the matches vector does not contain matches for fully masked-out query descriptors.public void knnMatch(Mat queryDescriptors, List<MatOfDMatch> matches, int k)
queryDescriptors - Query set of descriptors.matches - Matches. Each matches[i] is k or less matches for the same query descriptor.k - Count of best matches found per each query descriptor or less if a query descriptor has
     less than k possible matches in total.
     descriptors and stored train descriptors from the i-th image trainDescCollection[i].
     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
     the matches vector does not contain matches for fully masked-out query descriptors.public void match(Mat queryDescriptors, Mat trainDescriptors, MatOfDMatch matches, Mat mask)
queryDescriptors - Query set of descriptors.trainDescriptors - Train set of descriptors. This set is not added to the train descriptors
     collection stored in the class object.matches - Matches. If a query descriptor is masked out in mask , no match is added for this
     descriptor. So, matches size may be smaller than the query descriptors count.mask - Mask specifying permissible matches between an input query and train matrices of
     descriptors.
     In the first variant of this method, the train descriptors are passed as an input argument. In the
     second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
     used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
     matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
     mask.at<uchar>(i,j) is non-zero.public void match(Mat queryDescriptors, Mat trainDescriptors, MatOfDMatch matches)
queryDescriptors - Query set of descriptors.trainDescriptors - Train set of descriptors. This set is not added to the train descriptors
     collection stored in the class object.matches - Matches. If a query descriptor is masked out in mask , no match is added for this
     descriptor. So, matches size may be smaller than the query descriptors count.
     descriptors.
     In the first variant of this method, the train descriptors are passed as an input argument. In the
     second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
     used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
     matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
     mask.at<uchar>(i,j) is non-zero.public void match(Mat queryDescriptors, MatOfDMatch matches, List<Mat> masks)
queryDescriptors - Query set of descriptors.matches - Matches. If a query descriptor is masked out in mask , no match is added for this
     descriptor. So, matches size may be smaller than the query descriptors count.masks - Set of masks. Each masks[i] specifies permissible matches between the input query
     descriptors and stored train descriptors from the i-th image trainDescCollection[i].public void match(Mat queryDescriptors, MatOfDMatch matches)
queryDescriptors - Query set of descriptors.matches - Matches. If a query descriptor is masked out in mask , no match is added for this
     descriptor. So, matches size may be smaller than the query descriptors count.
     descriptors and stored train descriptors from the i-th image trainDescCollection[i].public void radiusMatch(Mat queryDescriptors, Mat trainDescriptors, List<MatOfDMatch> matches, float maxDistance, Mat mask, boolean compactResult)
queryDescriptors - Query set of descriptors.trainDescriptors - Train set of descriptors. This set is not added to the train descriptors
     collection stored in the class object.matches - Found matches.compactResult - Parameter used when the mask (or masks) is not empty. If compactResult is
     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
     the matches vector does not contain matches for fully masked-out query descriptors.maxDistance - Threshold for the distance between matched descriptors. Distance means here
     metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
     in Pixels)!mask - Mask specifying permissible matches between an input query and train matrices of
     descriptors.
     For each query descriptor, the methods find such training descriptors that the distance between the
     query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
     returned in the distance increasing order.public void radiusMatch(Mat queryDescriptors, Mat trainDescriptors, List<MatOfDMatch> matches, float maxDistance, Mat mask)
queryDescriptors - Query set of descriptors.trainDescriptors - Train set of descriptors. This set is not added to the train descriptors
     collection stored in the class object.matches - Found matches.
     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
     the matches vector does not contain matches for fully masked-out query descriptors.maxDistance - Threshold for the distance between matched descriptors. Distance means here
     metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
     in Pixels)!mask - Mask specifying permissible matches between an input query and train matrices of
     descriptors.
     For each query descriptor, the methods find such training descriptors that the distance between the
     query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
     returned in the distance increasing order.public void radiusMatch(Mat queryDescriptors, Mat trainDescriptors, List<MatOfDMatch> matches, float maxDistance)
queryDescriptors - Query set of descriptors.trainDescriptors - Train set of descriptors. This set is not added to the train descriptors
     collection stored in the class object.matches - Found matches.
     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
     the matches vector does not contain matches for fully masked-out query descriptors.maxDistance - Threshold for the distance between matched descriptors. Distance means here
     metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
     in Pixels)!
     descriptors.
     For each query descriptor, the methods find such training descriptors that the distance between the
     query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
     returned in the distance increasing order.public void radiusMatch(Mat queryDescriptors, List<MatOfDMatch> matches, float maxDistance, List<Mat> masks, boolean compactResult)
queryDescriptors - Query set of descriptors.matches - Found matches.maxDistance - Threshold for the distance between matched descriptors. Distance means here
     metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
     in Pixels)!masks - Set of masks. Each masks[i] specifies permissible matches between the input query
     descriptors and stored train descriptors from the i-th image trainDescCollection[i].compactResult - Parameter used when the mask (or masks) is not empty. If compactResult is
     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
     the matches vector does not contain matches for fully masked-out query descriptors.public void radiusMatch(Mat queryDescriptors, List<MatOfDMatch> matches, float maxDistance, List<Mat> masks)
queryDescriptors - Query set of descriptors.matches - Found matches.maxDistance - Threshold for the distance between matched descriptors. Distance means here
     metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
     in Pixels)!masks - Set of masks. Each masks[i] specifies permissible matches between the input query
     descriptors and stored train descriptors from the i-th image trainDescCollection[i].
     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
     the matches vector does not contain matches for fully masked-out query descriptors.public void radiusMatch(Mat queryDescriptors, List<MatOfDMatch> matches, float maxDistance)
queryDescriptors - Query set of descriptors.matches - Found matches.maxDistance - Threshold for the distance between matched descriptors. Distance means here
     metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
     in Pixels)!
     descriptors and stored train descriptors from the i-th image trainDescCollection[i].
     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
     the matches vector does not contain matches for fully masked-out query descriptors.public void read(String fileName)
public void train()
public void write(String fileName)
Generated on Wed Oct 9 2019 23:24:43 UTC / OpenCV 4.1.2