public class Facemark extends Algorithm
 // Using Facemark in your code:
 Ptr<Facemark> facemark = createFacemarkLBF();
 
 The typical pipeline for facemark detection is as follows:
 | Modifier | Constructor and Description | 
|---|---|
| protected  | Facemark(long addr) | 
| Modifier and Type | Method and Description | 
|---|---|
| static Facemark | __fromPtr__(long addr) | 
| protected void | finalize() | 
| boolean | fit(Mat image,
   MatOfRect faces,
   List<MatOfPoint2f> landmarks)Detect facial landmarks from an image. | 
| void | loadModel(String model)A function to load the trained model before the fitting process. | 
clear, empty, getDefaultName, getNativeObjAddr, savepublic static Facemark __fromPtr__(long addr)
public boolean fit(Mat image, MatOfRect faces, List<MatOfPoint2f> landmarks)
image - Input image.faces - Output of the function which represent region of interest of the detected faces.
     Each face is stored in cv::Rect container.landmarks - The detected landmark points for each faces.
     <B>Example of usage</B>
     
     Mat image = imread("image.jpg");
     std::vector<Rect> faces;
     std::vector<std::vector<Point2f> > landmarks;
     facemark->fit(image, faces, landmarks);
     public void loadModel(String model)
model - A string represent the filename of a trained model.
     <B>Example of usage</B>
     
     facemark->loadModel("../data/lbf.model");
     Generated on Wed Oct 9 2019 23:24:43 UTC / OpenCV 4.1.2