public class EigenFaceRecognizer extends BasicFaceRecognizer
| Modifier | Constructor and Description | 
|---|---|
| protected  | EigenFaceRecognizer(long addr) | 
| Modifier and Type | Method and Description | 
|---|---|
| static EigenFaceRecognizer | __fromPtr__(long addr) | 
| static EigenFaceRecognizer | create()Component Analysis. | 
| static EigenFaceRecognizer | create(int num_components) | 
| static EigenFaceRecognizer | create(int num_components,
      double threshold) | 
| protected void | finalize() | 
getEigenValues, getEigenVectors, getLabels, getMean, getNumComponents, getProjections, getThreshold, setNumComponents, setThresholdgetLabelInfo, getLabelsByString, predict_collect, predict_label, predict, read, setLabelInfo, train, update, writeclear, empty, getDefaultName, getNativeObjAddr, savepublic static EigenFaceRecognizer __fromPtr__(long addr)
public static EigenFaceRecognizer create(int num_components, double threshold)
num_components - The number of components (read: Eigenfaces) kept for this Principal
     Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be
     kept for good reconstruction capabilities. It is based on your input data, so experiment with the
     number. Keeping 80 components should almost always be sufficient.threshold - The threshold applied in the prediction.
     ### Notes:
 public static EigenFaceRecognizer create(int num_components)
num_components - The number of components (read: Eigenfaces) kept for this Principal
     Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be
     kept for good reconstruction capabilities. It is based on your input data, so experiment with the
     number. Keeping 80 components should almost always be sufficient.
     ### Notes:
 public static EigenFaceRecognizer create()
protected void finalize()
                 throws Throwable
finalize in class BasicFaceRecognizerThrowableGenerated on Wed Oct 9 2019 23:24:43 UTC / OpenCV 4.1.2