![]()  | 
  
    OpenCV
    3.2.0
    
   Open Source Computer Vision 
   | 
 
Classes | |
| class | cv::ml::ANN_MLP | 
| Artificial Neural Networks - Multi-Layer Perceptrons.  More... | |
| class | cv::ml::Boost | 
| Boosted tree classifier derived from DTrees.  More... | |
| class | cv::ml::DTrees | 
| The class represents a single decision tree or a collection of decision trees.  More... | |
| class | cv::ml::EM | 
| The class implements the Expectation Maximization algorithm.  More... | |
| class | cv::ml::KNearest | 
| The class implements K-Nearest Neighbors model.  More... | |
| class | cv::ml::LogisticRegression | 
| Implements Logistic Regression classifier.  More... | |
| class | cv::ml::NormalBayesClassifier | 
| Bayes classifier for normally distributed data.  More... | |
| class | cv::ml::ParamGrid | 
| The structure represents the logarithmic grid range of statmodel parameters.  More... | |
| class | cv::ml::RTrees | 
| The class implements the random forest predictor.  More... | |
| class | cv::ml::StatModel | 
| Base class for statistical models in OpenCV ML.  More... | |
| class | cv::ml::SVM | 
| Support Vector Machines.  More... | |
| class | cv::ml::SVMSGD | 
| Stochastic Gradient Descent SVM classifier.  More... | |
| class | cv::ml::TrainData | 
| Class encapsulating training data.  More... | |
Enumerations | |
| enum | cv::ml::ErrorTypes {  cv::ml::TEST_ERROR = 0, cv::ml::TRAIN_ERROR = 1 }  | 
| Error types  More... | |
| enum | cv::ml::SampleTypes {  cv::ml::ROW_SAMPLE = 0, cv::ml::COL_SAMPLE = 1 }  | 
| Sample types.  More... | |
| enum | cv::ml::VariableTypes {  cv::ml::VAR_NUMERICAL =0, cv::ml::VAR_ORDERED =0, cv::ml::VAR_CATEGORICAL =1 }  | 
| Variable types.  More... | |
Functions | |
| void | cv::ml::createConcentricSpheresTestSet (int nsamples, int nfeatures, int nclasses, OutputArray samples, OutputArray responses) | 
| Creates test set.  More... | |
| void | cv::ml::randMVNormal (InputArray mean, InputArray cov, int nsamples, OutputArray samples) | 
| Generates sample from multivariate normal distribution.  More... | |
The Machine Learning Library (MLL) is a set of classes and functions for statistical classification, regression, and clustering of data.
Most of the classification and regression algorithms are implemented as C++ classes. As the algorithms have different sets of features (like an ability to handle missing measurements or categorical input variables), there is a little common ground between the classes. This common ground is defined by the class cv::ml::StatModel that all the other ML classes are derived from.
See detailed overview here: Machine Learning Overview.
| enum cv::ml::ErrorTypes | 
| enum cv::ml::SampleTypes | 
| void cv::ml::createConcentricSpheresTestSet | ( | int | nsamples, | 
| int | nfeatures, | ||
| int | nclasses, | ||
| OutputArray | samples, | ||
| OutputArray | responses | ||
| ) | 
Creates test set.
| void cv::ml::randMVNormal | ( | InputArray | mean, | 
| InputArray | cov, | ||
| int | nsamples, | ||
| OutputArray | samples | ||
| ) | 
Generates sample from multivariate normal distribution.
| mean | an average row vector | 
| cov | symmetric covariation matrix | 
| nsamples | returned samples count | 
| samples | returned samples array | 
 1.8.12