OpenCV
3.2.0
Open Source Computer Vision
|
Implements Logistic Regression classifier. More...
#include "ml.hpp"
Public Types | |
enum | Methods { BATCH = 0, MINI_BATCH = 1 } |
Training methods. More... | |
enum | RegKinds { REG_DISABLE = -1, REG_L1 = 0, REG_L2 = 1 } |
Regularization kinds. More... | |
Public Types inherited from cv::ml::StatModel | |
enum | Flags { UPDATE_MODEL = 1, RAW_OUTPUT =1, COMPRESSED_INPUT =2, PREPROCESSED_INPUT =4 } |
Public Member Functions | |
virtual Mat | get_learnt_thetas () const =0 |
This function returns the trained paramters arranged across rows. More... | |
virtual int | getIterations () const =0 |
virtual double | getLearningRate () const =0 |
virtual int | getMiniBatchSize () const =0 |
virtual int | getRegularization () const =0 |
virtual TermCriteria | getTermCriteria () const =0 |
virtual int | getTrainMethod () const =0 |
virtual float | predict (InputArray samples, OutputArray results=noArray(), int flags=0) const =0 |
Predicts responses for input samples and returns a float type. More... | |
virtual void | setIterations (int val)=0 |
virtual void | setLearningRate (double val)=0 |
virtual void | setMiniBatchSize (int val)=0 |
virtual void | setRegularization (int val)=0 |
virtual void | setTermCriteria (TermCriteria val)=0 |
virtual void | setTrainMethod (int val)=0 |
Public Member Functions inherited from cv::ml::StatModel | |
virtual float | calcError (const Ptr< TrainData > &data, bool test, OutputArray resp) const |
Computes error on the training or test dataset. More... | |
virtual bool | empty () const |
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read. More... | |
virtual int | getVarCount () const =0 |
Returns the number of variables in training samples. More... | |
virtual bool | isClassifier () const =0 |
Returns true if the model is classifier. More... | |
virtual bool | isTrained () const =0 |
Returns true if the model is trained. More... | |
virtual bool | train (const Ptr< TrainData > &trainData, int flags=0) |
Trains the statistical model. More... | |
virtual bool | train (InputArray samples, int layout, InputArray responses) |
Trains the statistical model. More... | |
Public Member Functions inherited from cv::Algorithm | |
Algorithm () | |
virtual | ~Algorithm () |
virtual void | clear () |
Clears the algorithm state. More... | |
virtual String | getDefaultName () const |
virtual void | read (const FileNode &fn) |
Reads algorithm parameters from a file storage. More... | |
virtual void | save (const String &filename) const |
virtual void | write (FileStorage &fs) const |
Stores algorithm parameters in a file storage. More... | |
Static Public Member Functions | |
static Ptr< LogisticRegression > | create () |
Creates empty model. More... | |
Static Public Member Functions inherited from cv::ml::StatModel | |
template<typename _Tp > | |
static Ptr< _Tp > | train (const Ptr< TrainData > &data, int flags=0) |
Create and train model with default parameters. More... | |
Static Public Member Functions inherited from cv::Algorithm | |
template<typename _Tp > | |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
Loads algorithm from the file. More... | |
template<typename _Tp > | |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
Loads algorithm from a String. More... | |
template<typename _Tp > | |
static Ptr< _Tp > | read (const FileNode &fn) |
Reads algorithm from the file node. More... | |
Additional Inherited Members | |
Protected Member Functions inherited from cv::Algorithm | |
void | writeFormat (FileStorage &fs) const |
Implements Logistic Regression classifier.
|
static |
Creates empty model.
Creates Logistic Regression model with parameters given.
|
pure virtual |
This function returns the trained paramters arranged across rows.
For a two class classifcation problem, it returns a row matrix. It returns learnt paramters of the Logistic Regression as a matrix of type CV_32F.
|
pure virtual |
Number of iterations.
|
pure virtual |
Learning rate.
|
pure virtual |
Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It has to take values less than the total number of training samples.
|
pure virtual |
Kind of regularization to be applied. See LogisticRegression::RegKinds.
|
pure virtual |
Termination criteria of the algorithm.
|
pure virtual |
Kind of training method used. See LogisticRegression::Methods.
|
pure virtual |
Predicts responses for input samples and returns a float type.
samples | The input data for the prediction algorithm. Matrix [m x n], where each row contains variables (features) of one object being classified. Should have data type CV_32F. |
results | Predicted labels as a column matrix of type CV_32S. |
flags | Not used. |
Implements cv::ml::StatModel.
|
pure virtual |
|
pure virtual |
|
pure virtual |
|
pure virtual |
|
pure virtual |
|
pure virtual |