OpenCV  2.4.13
Open Source Computer Vision
cvflann::MinkowskiDistance< T > Struct Template Reference

#include <dist.h>

Public Types

typedef True is_kdtree_distance
 
typedef True is_vector_space_distance
 
typedef T ElementType
 
typedef Accumulator< T >::Type ResultType
 

Public Member Functions

 MinkowskiDistance (int order_)
 
template<typename Iterator1 , typename Iterator2 >
ResultType operator() (Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist=-1) const
 
template<typename U , typename V >
ResultType accum_dist (const U &a, const V &b, int) const
 

Public Attributes

int order
 

Member Typedef Documentation

template<class T>
typedef T cvflann::MinkowskiDistance< T >::ElementType
template<class T>
typedef True cvflann::MinkowskiDistance< T >::is_kdtree_distance
template<class T>
typedef True cvflann::MinkowskiDistance< T >::is_vector_space_distance
template<class T>
typedef Accumulator<T>::Type cvflann::MinkowskiDistance< T >::ResultType

Constructor & Destructor Documentation

template<class T>
cvflann::MinkowskiDistance< T >::MinkowskiDistance ( int  order_)
inline

Member Function Documentation

template<class T>
template<typename U , typename V >
ResultType cvflann::MinkowskiDistance< T >::accum_dist ( const U &  a,
const V &  b,
int   
) const
inline

Partial distance, used by the kd-tree.

template<class T>
template<typename Iterator1 , typename Iterator2 >
ResultType cvflann::MinkowskiDistance< T >::operator() ( Iterator1  a,
Iterator2  b,
size_t  size,
ResultType  worst_dist = -1 
) const
inline

Compute the Minkowsky (L_p) distance between two vectors.

This is highly optimised, with loop unrolling, as it is one of the most expensive inner loops.

The computation of squared root at the end is omitted for efficiency.

Member Data Documentation

template<class T>
int cvflann::MinkowskiDistance< T >::order

The documentation for this struct was generated from the following file: