|
| virtual | ~GeneralizedHough_GPU () |
| |
| void | setTemplate (const GpuMat &templ, int cannyThreshold=100, Point templCenter=Point(-1, -1)) |
| | set template to search More...
|
| |
| void | setTemplate (const GpuMat &edges, const GpuMat &dx, const GpuMat &dy, Point templCenter=Point(-1, -1)) |
| |
| void | detect (const GpuMat &image, GpuMat &positions, int cannyThreshold=100) |
| | find template on image More...
|
| |
| void | detect (const GpuMat &edges, const GpuMat &dx, const GpuMat &dy, GpuMat &positions) |
| |
| void | download (const GpuMat &d_positions, OutputArray h_positions, OutputArray h_votes=noArray()) |
| |
| void | release () |
| |
| | Algorithm () |
| |
| virtual | ~Algorithm () |
| |
| string | name () const |
| |
| template<typename _Tp > |
| ParamType< _Tp >::member_type | get (const string &name) const |
| |
| template<typename _Tp > |
| ParamType< _Tp >::member_type | get (const char *name) const |
| |
| int | getInt (const string &name) const |
| |
| double | getDouble (const string &name) const |
| |
| bool | getBool (const string &name) const |
| |
| string | getString (const string &name) const |
| |
| Mat | getMat (const string &name) const |
| |
| vector< Mat > | getMatVector (const string &name) const |
| |
| Ptr< Algorithm > | getAlgorithm (const string &name) const |
| |
| void | set (const string &name, int value) |
| |
| void | set (const string &name, double value) |
| |
| void | set (const string &name, bool value) |
| |
| void | set (const string &name, const string &value) |
| |
| void | set (const string &name, const Mat &value) |
| |
| void | set (const string &name, const vector< Mat > &value) |
| |
| void | set (const string &name, const Ptr< Algorithm > &value) |
| |
| template<typename _Tp > |
| void | set (const string &name, const Ptr< _Tp > &value) |
| |
| void | setInt (const string &name, int value) |
| |
| void | setDouble (const string &name, double value) |
| |
| void | setBool (const string &name, bool value) |
| |
| void | setString (const string &name, const string &value) |
| |
| void | setMat (const string &name, const Mat &value) |
| |
| void | setMatVector (const string &name, const vector< Mat > &value) |
| |
| void | setAlgorithm (const string &name, const Ptr< Algorithm > &value) |
| |
| template<typename _Tp > |
| void | setAlgorithm (const string &name, const Ptr< _Tp > &value) |
| |
| void | set (const char *name, int value) |
| |
| void | set (const char *name, double value) |
| |
| void | set (const char *name, bool value) |
| |
| void | set (const char *name, const string &value) |
| |
| void | set (const char *name, const Mat &value) |
| |
| void | set (const char *name, const vector< Mat > &value) |
| |
| void | set (const char *name, const Ptr< Algorithm > &value) |
| |
| template<typename _Tp > |
| void | set (const char *name, const Ptr< _Tp > &value) |
| |
| void | setInt (const char *name, int value) |
| |
| void | setDouble (const char *name, double value) |
| |
| void | setBool (const char *name, bool value) |
| |
| void | setString (const char *name, const string &value) |
| |
| void | setMat (const char *name, const Mat &value) |
| |
| void | setMatVector (const char *name, const vector< Mat > &value) |
| |
| void | setAlgorithm (const char *name, const Ptr< Algorithm > &value) |
| |
| template<typename _Tp > |
| void | setAlgorithm (const char *name, const Ptr< _Tp > &value) |
| |
| string | paramHelp (const string &name) const |
| |
| int | paramType (const char *name) const |
| |
| int | paramType (const string &name) const |
| |
| void | getParams (CV_OUT vector< string > &names) const |
| |
| virtual void | write (FileStorage &fs) const |
| |
| virtual void | read (const FileNode &fn) |
| |
| virtual AlgorithmInfo * | info () const |
| |
finds arbitrary template in the grayscale image using Generalized Hough Transform Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122. Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.