public class EM extends StatModel
Modifier and Type | Field and Description |
---|---|
static int |
COV_MAT_DEFAULT |
static int |
COV_MAT_DIAGONAL |
static int |
COV_MAT_GENERIC |
static int |
COV_MAT_SPHERICAL |
static int |
DEFAULT_MAX_ITERS |
static int |
DEFAULT_NCLUSTERS |
static int |
START_AUTO_STEP |
static int |
START_E_STEP |
static int |
START_M_STEP |
COMPRESSED_INPUT, PREPROCESSED_INPUT, RAW_OUTPUT, UPDATE_MODEL
Modifier and Type | Method and Description |
---|---|
static EM |
create() |
int |
getClustersNumber() |
int |
getCovarianceMatrixType() |
void |
getCovs(java.util.List<Mat> covs) |
Mat |
getMeans() |
TermCriteria |
getTermCriteria() |
Mat |
getWeights() |
double[] |
predict2(Mat sample,
Mat probs) |
void |
setClustersNumber(int val) |
void |
setCovarianceMatrixType(int val) |
void |
setTermCriteria(TermCriteria val) |
boolean |
trainE(Mat samples,
Mat means0) |
boolean |
trainE(Mat samples,
Mat means0,
Mat covs0,
Mat weights0,
Mat logLikelihoods,
Mat labels,
Mat probs) |
boolean |
trainEM(Mat samples) |
boolean |
trainEM(Mat samples,
Mat logLikelihoods,
Mat labels,
Mat probs) |
boolean |
trainM(Mat samples,
Mat probs0) |
boolean |
trainM(Mat samples,
Mat probs0,
Mat logLikelihoods,
Mat labels,
Mat probs) |
empty, getVarCount, isClassifier, isTrained, predict, predict, train
clear, getDefaultName, save
public static final int COV_MAT_DEFAULT
public static final int COV_MAT_DIAGONAL
public static final int COV_MAT_GENERIC
public static final int COV_MAT_SPHERICAL
public static final int DEFAULT_MAX_ITERS
public static final int DEFAULT_NCLUSTERS
public static final int START_AUTO_STEP
public static final int START_E_STEP
public static final int START_M_STEP
public static EM create()
public int getClustersNumber()
public int getCovarianceMatrixType()
public void getCovs(java.util.List<Mat> covs)
public Mat getMeans()
public TermCriteria getTermCriteria()
public Mat getWeights()
public void setClustersNumber(int val)
public void setCovarianceMatrixType(int val)
public void setTermCriteria(TermCriteria val)
public boolean trainE(Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods, Mat labels, Mat probs)
public boolean trainEM(Mat samples)