org.opencv.ml
public class CvBoostParams extends CvDTreeParams
Boosting training parameters.
There is one structure member that you can set directly:
Splitting criteria used to choose optimal splits during a weak tree construction. Possible values are:
// C++ code:
- CvBoost.GINI Use Gini index. This is default option for Real
AdaBoost; may be also used for Discrete AdaBoost.
- CvBoost.MISCLASS Use misclassification rate. This is default option
for Discrete AdaBoost; may be also used for Real AdaBoost.
- CvBoost.SQERR Use least squares criteria. This is default and the
only option for LogitBoost and Gentle AdaBoost.
The structure is derived from "CvDTreeParams" but not all of the decision
tree parameters are supported. In particular, cross-validation is not
supported.
All parameters are public. You can initialize them by a constructor and then override some of them directly if you want.
Constructor and Description |
---|
CvBoostParams()
The constructors.
|
Modifier and Type | Method and Description |
---|---|
int |
get_boost_type() |
int |
get_split_criteria() |
int |
get_weak_count() |
double |
get_weight_trim_rate() |
void |
set_boost_type(int boost_type) |
void |
set_split_criteria(int split_criteria) |
void |
set_weak_count(int weak_count) |
void |
set_weight_trim_rate(double weight_trim_rate) |
get_cv_folds, get_max_categories, get_max_depth, get_min_sample_count, get_regression_accuracy, get_truncate_pruned_tree, get_use_1se_rule, get_use_surrogates, set_cv_folds, set_max_categories, set_max_depth, set_min_sample_count, set_regression_accuracy, set_truncate_pruned_tree, set_use_1se_rule, set_use_surrogates
public CvBoostParams()
The constructors.
See "CvDTreeParams.CvDTreeParams" for description of other parameters.
Default parameters are:
// C++ code:
CvBoostParams.CvBoostParams()
boost_type = CvBoost.REAL;
weak_count = 100;
weight_trim_rate = 0.95;
cv_folds = 0;
max_depth = 1;
-
Method Detail
-
get_boost_type
public int get_boost_type()
-
get_split_criteria
public int get_split_criteria()
-
get_weak_count
public int get_weak_count()
-
get_weight_trim_rate
public double get_weight_trim_rate()
-
set_boost_type
public void set_boost_type(int boost_type)
-
set_split_criteria
public void set_split_criteria(int split_criteria)
-
set_weak_count
public void set_weak_count(int weak_count)
-
set_weight_trim_rate
public void set_weight_trim_rate(double weight_trim_rate)