| 
 | OpenCV 2.4.3 (RC) | |||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||
java.lang.Objectorg.opencv.ml.CvStatModel
org.opencv.ml.CvDTree
public class CvDTree
The class implements a decision tree as described in the beginning of this section.
| Field Summary | 
|---|
| Fields inherited from class org.opencv.ml.CvStatModel | 
|---|
| nativeObj | 
| Constructor Summary | |
|---|---|
|   | CvDTree() | 
| protected  | CvDTree(long addr) | 
| Method Summary | |
|---|---|
|  void | clear() | 
| protected  void | finalize() | 
|  Mat | getVarImportance()Returns the variable importance array. | 
|  boolean | train(Mat trainData,
      int tflag,
      Mat responses)Trains a decision tree. | 
|  boolean | train(Mat trainData,
      int tflag,
      Mat responses,
      Mat varIdx,
      Mat sampleIdx,
      Mat varType,
      Mat missingDataMask,
      CvDTreeParams params)Trains a decision tree. | 
| Methods inherited from class org.opencv.ml.CvStatModel | 
|---|
| load, load, save, save | 
| Methods inherited from class java.lang.Object | 
|---|
| clone, equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait | 
| Constructor Detail | 
|---|
public CvDTree()
protected CvDTree(long addr)
| Method Detail | 
|---|
public void clear()
protected void finalize()
                 throws java.lang.Throwable
finalize in class CvStatModeljava.lang.Throwablepublic Mat getVarImportance()
Returns the variable importance array.
public boolean train(Mat trainData,
                     int tflag,
                     Mat responses)
Trains a decision tree.
There are four train methods in "CvDTree":
tflag=CV_ROW_SAMPLE and tflag=CV_COL_SAMPLE) are
 supported, as well as sample and variable subsets, missing measurements,
 arbitrary combinations of input and output variable types, and so on. The
 last parameter contains all of the necessary training parameters (see the
 "CvDTreeParams" description).
   train is mostly used for building tree
 ensembles. It takes the pre-constructed "CvDTreeTrainData" instance and an
 optional subset of the training set. The indices in subsampleIdx
 are counted relatively to the _sample_idx, passed to the
 CvDTreeTrainData constructor. For example, if _sample_idx=[1,
 5, 7, 100], then subsampleIdx=[0,3] means that the
 samples [1, 100] of the original training set are used.
 The function is parallelized with the TBB library.
trainData - a trainDatatflag - a tflagresponses - a responses
public boolean train(Mat trainData,
                     int tflag,
                     Mat responses,
                     Mat varIdx,
                     Mat sampleIdx,
                     Mat varType,
                     Mat missingDataMask,
                     CvDTreeParams params)
Trains a decision tree.
There are four train methods in "CvDTree":
tflag=CV_ROW_SAMPLE and tflag=CV_COL_SAMPLE) are
 supported, as well as sample and variable subsets, missing measurements,
 arbitrary combinations of input and output variable types, and so on. The
 last parameter contains all of the necessary training parameters (see the
 "CvDTreeParams" description).
   train is mostly used for building tree
 ensembles. It takes the pre-constructed "CvDTreeTrainData" instance and an
 optional subset of the training set. The indices in subsampleIdx
 are counted relatively to the _sample_idx, passed to the
 CvDTreeTrainData constructor. For example, if _sample_idx=[1,
 5, 7, 100], then subsampleIdx=[0,3] means that the
 samples [1, 100] of the original training set are used.
 The function is parallelized with the TBB library.
trainData - a trainDatatflag - a tflagresponses - a responsesvarIdx - a varIdxsampleIdx - a sampleIdxvarType - a varTypemissingDataMask - a missingDataMaskparams - a params| 
 | Official OpenCV 2.4 Documentation | |||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||