| 
 | OpenCV 2.4.3 (RC) | |||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||
java.lang.Objectorg.opencv.ml.CvANN_MLP_TrainParams
public class CvANN_MLP_TrainParams
Parameters of the MLP training algorithm. You can initialize the structure by a constructor or the individual parameters can be adjusted after the structure is created.
The back-propagation algorithm parameters:
Strength of the weight gradient term. The recommended value is about 0.1.
Strength of the momentum term (the difference between weights on the 2
 previous iterations). This parameter provides some inertia to smooth the
 random fluctuations of the weights. It can vary from 0 (the feature is
 disabled) to 1 and beyond. The value 0.1 or so is good enough 
// C++ code:
The RPROP algorithm parameters (see [RPROP93] for details):
Initial value Delta_0 of update-values Delta_(ij).
Increase factor eta^+. It must be >1.
Decrease factor eta^-. It must be <1.
Update-values lower limit Delta_(min). It must be positive.
Update-values upper limit Delta_(max). It must be >1.
| Field Summary | |
|---|---|
| static int | BACKPROP | 
| protected  long | nativeObj | 
| static int | RPROP | 
| Constructor Summary | |
|---|---|
|   | CvANN_MLP_TrainParams()The constructors. | 
| protected  | CvANN_MLP_TrainParams(long addr) | 
| Method Summary | |
|---|---|
| protected  void | finalize() | 
|  double | get_bp_dw_scale() | 
|  double | get_bp_moment_scale() | 
|  double | get_rp_dw_max() | 
|  double | get_rp_dw_min() | 
|  double | get_rp_dw_minus() | 
|  double | get_rp_dw_plus() | 
|  double | get_rp_dw0() | 
|  TermCriteria | get_term_crit() | 
|  int | get_train_method() | 
|  void | set_bp_dw_scale(double bp_dw_scale) | 
|  void | set_bp_moment_scale(double bp_moment_scale) | 
|  void | set_rp_dw_max(double rp_dw_max) | 
|  void | set_rp_dw_min(double rp_dw_min) | 
|  void | set_rp_dw_minus(double rp_dw_minus) | 
|  void | set_rp_dw_plus(double rp_dw_plus) | 
|  void | set_rp_dw0(double rp_dw0) | 
|  void | set_term_crit(TermCriteria term_crit) | 
|  void | set_train_method(int train_method) | 
| Methods inherited from class java.lang.Object | 
|---|
| clone, equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait | 
| Field Detail | 
|---|
public static final int BACKPROP
protected final long nativeObj
public static final int RPROP
| Constructor Detail | 
|---|
public CvANN_MLP_TrainParams()
The constructors.
By default the RPROP algorithm is used:
// C++ code:
CvANN_MLP_TrainParams.CvANN_MLP_TrainParams()
term_crit = cvTermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 1000, 0.01);
train_method = RPROP;
bp_dw_scale = bp_moment_scale = 0.1;
rp_dw0 = 0.1; rp_dw_plus = 1.2; rp_dw_minus = 0.5;
rp_dw_min = FLT_EPSILON; rp_dw_max = 50.;
protected CvANN_MLP_TrainParams(long addr)
| Method Detail | 
|---|
protected void finalize()
                 throws java.lang.Throwable
finalize in class java.lang.Objectjava.lang.Throwablepublic double get_bp_dw_scale()
public double get_bp_moment_scale()
public double get_rp_dw_max()
public double get_rp_dw_min()
public double get_rp_dw_minus()
public double get_rp_dw_plus()
public double get_rp_dw0()
public TermCriteria get_term_crit()
public int get_train_method()
public void set_bp_dw_scale(double bp_dw_scale)
public void set_bp_moment_scale(double bp_moment_scale)
public void set_rp_dw_max(double rp_dw_max)
public void set_rp_dw_min(double rp_dw_min)
public void set_rp_dw_minus(double rp_dw_minus)
public void set_rp_dw_plus(double rp_dw_plus)
public void set_rp_dw0(double rp_dw0)
public void set_term_crit(TermCriteria term_crit)
public void set_train_method(int train_method)
| 
 | Official OpenCV 2.4 Documentation | |||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||