org.opencv.ml
public class CvGBTreesParams extends CvDTreeParams
GBT training parameters.
The structure contains parameters for each single decision tree in the ensemble, as well as the whole model characteristics. The structure is derived from "CvDTreeParams" but not all of the decision tree parameters are supported: cross-validation, pruning, and class priorities are not used.
Constructor and Description |
---|
CvGBTreesParams()
By default the following constructor is used: CvGBTreesParams(CvGBTrees.SQUARED_LOSS,
200, 0.8f, 0.01f, 3, false)
|
Modifier and Type | Method and Description |
---|---|
int |
get_loss_function_type() |
float |
get_shrinkage() |
float |
get_subsample_portion() |
int |
get_weak_count() |
void |
set_loss_function_type(int loss_function_type) |
void |
set_shrinkage(float shrinkage) |
void |
set_subsample_portion(float subsample_portion) |
void |
set_weak_count(int weak_count) |
get_cv_folds, get_max_categories, get_max_depth, get_min_sample_count, get_regression_accuracy, get_truncate_pruned_tree, get_use_1se_rule, get_use_surrogates, set_cv_folds, set_max_categories, set_max_depth, set_min_sample_count, set_regression_accuracy, set_truncate_pruned_tree, set_use_1se_rule, set_use_surrogates
public CvGBTreesParams()
By default the following constructor is used: CvGBTreesParams(CvGBTrees.SQUARED_LOSS,
200, 0.8f, 0.01f, 3, false)
// C++ code:
: CvDTreeParams(3, 10, 0, false, 10, 0, false, false, 0)
public int get_loss_function_type()
public float get_shrinkage()
public float get_subsample_portion()
public int get_weak_count()
public void set_loss_function_type(int loss_function_type)
public void set_shrinkage(float shrinkage)
public void set_subsample_portion(float subsample_portion)
public void set_weak_count(int weak_count)