Class HOGDescriptor


  • public class HOGDescriptor
    extends java.lang.Object
    Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector. the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs CITE: Dalal2005 . useful links: https://hal.inria.fr/inria-00548512/document/ https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor http://www.learnopencv.com/histogram-of-oriented-gradients http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial
    • Constructor Summary

      Constructors 
      Modifier Constructor Description
        HOGDescriptor()
      Creates the HOG descriptor and detector with default parameters.
      protected HOGDescriptor​(long addr)  
        HOGDescriptor​(java.lang.String filename)
      Creates the HOG descriptor and detector and loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
        HOGDescriptor​(Size _winSize)
      Creates the HOG descriptor and detector with default parameters.
        HOGDescriptor​(Size _winSize, Size _blockSize)
      Creates the HOG descriptor and detector with default parameters.
        HOGDescriptor​(Size _winSize, Size _blockSize, Size _blockStride)
      Creates the HOG descriptor and detector with default parameters.
        HOGDescriptor​(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize)
      Creates the HOG descriptor and detector with default parameters.
        HOGDescriptor​(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins)
      Creates the HOG descriptor and detector with default parameters.
        HOGDescriptor​(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture)
      Creates the HOG descriptor and detector with default parameters.
        HOGDescriptor​(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma)
      Creates the HOG descriptor and detector with default parameters.
        HOGDescriptor​(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType)
      Creates the HOG descriptor and detector with default parameters.
        HOGDescriptor​(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold)
      Creates the HOG descriptor and detector with default parameters.
        HOGDescriptor​(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection)
      Creates the HOG descriptor and detector with default parameters.
        HOGDescriptor​(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection, int _nlevels)
      Creates the HOG descriptor and detector with default parameters.
        HOGDescriptor​(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, boolean _gammaCorrection, int _nlevels, boolean _signedGradient)
      Creates the HOG descriptor and detector with default parameters.
    • Constructor Detail

      • HOGDescriptor

        protected HOGDescriptor​(long addr)
      • HOGDescriptor

        public HOGDescriptor​(Size _winSize,
                             Size _blockSize,
                             Size _blockStride,
                             Size _cellSize,
                             int _nbins,
                             int _derivAperture,
                             double _winSigma,
                             int _histogramNormType,
                             double _L2HysThreshold,
                             boolean _gammaCorrection,
                             int _nlevels,
                             boolean _signedGradient)
        Creates the HOG descriptor and detector with default parameters.
        Parameters:
        _winSize - sets winSize with given value.
        _blockSize - sets blockSize with given value.
        _blockStride - sets blockStride with given value.
        _cellSize - sets cellSize with given value.
        _nbins - sets nbins with given value.
        _derivAperture - sets derivAperture with given value.
        _winSigma - sets winSigma with given value.
        _histogramNormType - sets histogramNormType with given value.
        _L2HysThreshold - sets L2HysThreshold with given value.
        _gammaCorrection - sets gammaCorrection with given value.
        _nlevels - sets nlevels with given value.
        _signedGradient - sets signedGradient with given value.
      • HOGDescriptor

        public HOGDescriptor​(Size _winSize,
                             Size _blockSize,
                             Size _blockStride,
                             Size _cellSize,
                             int _nbins,
                             int _derivAperture,
                             double _winSigma,
                             int _histogramNormType,
                             double _L2HysThreshold,
                             boolean _gammaCorrection,
                             int _nlevels)
        Creates the HOG descriptor and detector with default parameters.
        Parameters:
        _winSize - sets winSize with given value.
        _blockSize - sets blockSize with given value.
        _blockStride - sets blockStride with given value.
        _cellSize - sets cellSize with given value.
        _nbins - sets nbins with given value.
        _derivAperture - sets derivAperture with given value.
        _winSigma - sets winSigma with given value.
        _histogramNormType - sets histogramNormType with given value.
        _L2HysThreshold - sets L2HysThreshold with given value.
        _gammaCorrection - sets gammaCorrection with given value.
        _nlevels - sets nlevels with given value.
      • HOGDescriptor

        public HOGDescriptor​(Size _winSize,
                             Size _blockSize,
                             Size _blockStride,
                             Size _cellSize,
                             int _nbins,
                             int _derivAperture,
                             double _winSigma,
                             int _histogramNormType,
                             double _L2HysThreshold,
                             boolean _gammaCorrection)
        Creates the HOG descriptor and detector with default parameters.
        Parameters:
        _winSize - sets winSize with given value.
        _blockSize - sets blockSize with given value.
        _blockStride - sets blockStride with given value.
        _cellSize - sets cellSize with given value.
        _nbins - sets nbins with given value.
        _derivAperture - sets derivAperture with given value.
        _winSigma - sets winSigma with given value.
        _histogramNormType - sets histogramNormType with given value.
        _L2HysThreshold - sets L2HysThreshold with given value.
        _gammaCorrection - sets gammaCorrection with given value.
      • HOGDescriptor

        public HOGDescriptor​(Size _winSize,
                             Size _blockSize,
                             Size _blockStride,
                             Size _cellSize,
                             int _nbins,
                             int _derivAperture,
                             double _winSigma,
                             int _histogramNormType,
                             double _L2HysThreshold)
        Creates the HOG descriptor and detector with default parameters.
        Parameters:
        _winSize - sets winSize with given value.
        _blockSize - sets blockSize with given value.
        _blockStride - sets blockStride with given value.
        _cellSize - sets cellSize with given value.
        _nbins - sets nbins with given value.
        _derivAperture - sets derivAperture with given value.
        _winSigma - sets winSigma with given value.
        _histogramNormType - sets histogramNormType with given value.
        _L2HysThreshold - sets L2HysThreshold with given value.
      • HOGDescriptor

        public HOGDescriptor​(Size _winSize,
                             Size _blockSize,
                             Size _blockStride,
                             Size _cellSize,
                             int _nbins,
                             int _derivAperture,
                             double _winSigma,
                             int _histogramNormType)
        Creates the HOG descriptor and detector with default parameters.
        Parameters:
        _winSize - sets winSize with given value.
        _blockSize - sets blockSize with given value.
        _blockStride - sets blockStride with given value.
        _cellSize - sets cellSize with given value.
        _nbins - sets nbins with given value.
        _derivAperture - sets derivAperture with given value.
        _winSigma - sets winSigma with given value.
        _histogramNormType - sets histogramNormType with given value.
      • HOGDescriptor

        public HOGDescriptor​(Size _winSize,
                             Size _blockSize,
                             Size _blockStride,
                             Size _cellSize,
                             int _nbins,
                             int _derivAperture,
                             double _winSigma)
        Creates the HOG descriptor and detector with default parameters.
        Parameters:
        _winSize - sets winSize with given value.
        _blockSize - sets blockSize with given value.
        _blockStride - sets blockStride with given value.
        _cellSize - sets cellSize with given value.
        _nbins - sets nbins with given value.
        _derivAperture - sets derivAperture with given value.
        _winSigma - sets winSigma with given value.
      • HOGDescriptor

        public HOGDescriptor​(Size _winSize,
                             Size _blockSize,
                             Size _blockStride,
                             Size _cellSize,
                             int _nbins,
                             int _derivAperture)
        Creates the HOG descriptor and detector with default parameters.
        Parameters:
        _winSize - sets winSize with given value.
        _blockSize - sets blockSize with given value.
        _blockStride - sets blockStride with given value.
        _cellSize - sets cellSize with given value.
        _nbins - sets nbins with given value.
        _derivAperture - sets derivAperture with given value.
      • HOGDescriptor

        public HOGDescriptor​(Size _winSize,
                             Size _blockSize,
                             Size _blockStride,
                             Size _cellSize,
                             int _nbins)
        Creates the HOG descriptor and detector with default parameters.
        Parameters:
        _winSize - sets winSize with given value.
        _blockSize - sets blockSize with given value.
        _blockStride - sets blockStride with given value.
        _cellSize - sets cellSize with given value.
        _nbins - sets nbins with given value.
      • HOGDescriptor

        public HOGDescriptor​(Size _winSize,
                             Size _blockSize,
                             Size _blockStride,
                             Size _cellSize)
        Creates the HOG descriptor and detector with default parameters.
        Parameters:
        _winSize - sets winSize with given value.
        _blockSize - sets blockSize with given value.
        _blockStride - sets blockStride with given value.
        _cellSize - sets cellSize with given value.
      • HOGDescriptor

        public HOGDescriptor​(Size _winSize,
                             Size _blockSize,
                             Size _blockStride)
        Creates the HOG descriptor and detector with default parameters.
        Parameters:
        _winSize - sets winSize with given value.
        _blockSize - sets blockSize with given value.
        _blockStride - sets blockStride with given value.
      • HOGDescriptor

        public HOGDescriptor​(Size _winSize,
                             Size _blockSize)
        Creates the HOG descriptor and detector with default parameters.
        Parameters:
        _winSize - sets winSize with given value.
        _blockSize - sets blockSize with given value.
      • HOGDescriptor

        public HOGDescriptor​(Size _winSize)
        Creates the HOG descriptor and detector with default parameters.
        Parameters:
        _winSize - sets winSize with given value.
      • HOGDescriptor

        public HOGDescriptor()
        Creates the HOG descriptor and detector with default parameters.
      • HOGDescriptor

        public HOGDescriptor​(java.lang.String filename)
        Creates the HOG descriptor and detector and loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
        Parameters:
        filename - The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier.
    • Method Detail

      • getNativeObjAddr

        public long getNativeObjAddr()
      • __fromPtr__

        public static HOGDescriptor __fromPtr__​(long addr)
      • getDescriptorSize

        public long getDescriptorSize()
        Returns the number of coefficients required for the classification.
        Returns:
        automatically generated
      • checkDetectorSize

        public boolean checkDetectorSize()
        Checks if detector size equal to descriptor size.
        Returns:
        automatically generated
      • getWinSigma

        public double getWinSigma()
        Returns winSigma value
        Returns:
        automatically generated
      • setSVMDetector

        public void setSVMDetector​(Mat svmdetector)
        Sets coefficients for the linear SVM classifier.
        Parameters:
        svmdetector - coefficients for the linear SVM classifier.
      • load

        public boolean load​(java.lang.String filename,
                            java.lang.String objname)
        loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file
        Parameters:
        filename - Name of the file to read.
        objname - The optional name of the node to read (if empty, the first top-level node will be used).
        Returns:
        automatically generated
      • load

        public boolean load​(java.lang.String filename)
        loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file
        Parameters:
        filename - Name of the file to read.
        Returns:
        automatically generated
      • save

        public void save​(java.lang.String filename,
                         java.lang.String objname)
        saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
        Parameters:
        filename - File name
        objname - Object name
      • save

        public void save​(java.lang.String filename)
        saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
        Parameters:
        filename - File name
      • compute

        public void compute​(Mat img,
                            MatOfFloat descriptors,
                            Size winStride,
                            Size padding,
                            MatOfPoint locations)
        Computes HOG descriptors of given image.
        Parameters:
        img - Matrix of the type CV_8U containing an image where HOG features will be calculated.
        descriptors - Matrix of the type CV_32F
        winStride - Window stride. It must be a multiple of block stride.
        padding - Padding
        locations - Vector of Point
      • compute

        public void compute​(Mat img,
                            MatOfFloat descriptors,
                            Size winStride,
                            Size padding)
        Computes HOG descriptors of given image.
        Parameters:
        img - Matrix of the type CV_8U containing an image where HOG features will be calculated.
        descriptors - Matrix of the type CV_32F
        winStride - Window stride. It must be a multiple of block stride.
        padding - Padding
      • compute

        public void compute​(Mat img,
                            MatOfFloat descriptors,
                            Size winStride)
        Computes HOG descriptors of given image.
        Parameters:
        img - Matrix of the type CV_8U containing an image where HOG features will be calculated.
        descriptors - Matrix of the type CV_32F
        winStride - Window stride. It must be a multiple of block stride.
      • compute

        public void compute​(Mat img,
                            MatOfFloat descriptors)
        Computes HOG descriptors of given image.
        Parameters:
        img - Matrix of the type CV_8U containing an image where HOG features will be calculated.
        descriptors - Matrix of the type CV_32F
      • detect

        public void detect​(Mat img,
                           MatOfPoint foundLocations,
                           MatOfDouble weights,
                           double hitThreshold,
                           Size winStride,
                           Size padding,
                           MatOfPoint searchLocations)
        Performs object detection without a multi-scale window.
        Parameters:
        img - Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
        foundLocations - Vector of point where each point contains left-top corner point of detected object boundaries.
        weights - Vector that will contain confidence values for each detected object.
        hitThreshold - Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
        winStride - Window stride. It must be a multiple of block stride.
        padding - Padding
        searchLocations - Vector of Point includes set of requested locations to be evaluated.
      • detect

        public void detect​(Mat img,
                           MatOfPoint foundLocations,
                           MatOfDouble weights,
                           double hitThreshold,
                           Size winStride,
                           Size padding)
        Performs object detection without a multi-scale window.
        Parameters:
        img - Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
        foundLocations - Vector of point where each point contains left-top corner point of detected object boundaries.
        weights - Vector that will contain confidence values for each detected object.
        hitThreshold - Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
        winStride - Window stride. It must be a multiple of block stride.
        padding - Padding
      • detect

        public void detect​(Mat img,
                           MatOfPoint foundLocations,
                           MatOfDouble weights,
                           double hitThreshold,
                           Size winStride)
        Performs object detection without a multi-scale window.
        Parameters:
        img - Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
        foundLocations - Vector of point where each point contains left-top corner point of detected object boundaries.
        weights - Vector that will contain confidence values for each detected object.
        hitThreshold - Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
        winStride - Window stride. It must be a multiple of block stride.
      • detect

        public void detect​(Mat img,
                           MatOfPoint foundLocations,
                           MatOfDouble weights,
                           double hitThreshold)
        Performs object detection without a multi-scale window.
        Parameters:
        img - Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
        foundLocations - Vector of point where each point contains left-top corner point of detected object boundaries.
        weights - Vector that will contain confidence values for each detected object.
        hitThreshold - Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
      • detect

        public void detect​(Mat img,
                           MatOfPoint foundLocations,
                           MatOfDouble weights)
        Performs object detection without a multi-scale window.
        Parameters:
        img - Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
        foundLocations - Vector of point where each point contains left-top corner point of detected object boundaries.
        weights - Vector that will contain confidence values for each detected object. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
      • detectMultiScale

        public void detectMultiScale​(Mat img,
                                     MatOfRect foundLocations,
                                     MatOfDouble foundWeights,
                                     double hitThreshold,
                                     Size winStride,
                                     Size padding,
                                     double scale,
                                     double groupThreshold,
                                     boolean useMeanshiftGrouping)
        Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
        Parameters:
        img - Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
        foundLocations - Vector of rectangles where each rectangle contains the detected object.
        foundWeights - Vector that will contain confidence values for each detected object.
        hitThreshold - Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
        winStride - Window stride. It must be a multiple of block stride.
        padding - Padding
        scale - Coefficient of the detection window increase.
        groupThreshold - Coefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
        useMeanshiftGrouping - indicates grouping algorithm
      • detectMultiScale

        public void detectMultiScale​(Mat img,
                                     MatOfRect foundLocations,
                                     MatOfDouble foundWeights,
                                     double hitThreshold,
                                     Size winStride,
                                     Size padding,
                                     double scale,
                                     double groupThreshold)
        Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
        Parameters:
        img - Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
        foundLocations - Vector of rectangles where each rectangle contains the detected object.
        foundWeights - Vector that will contain confidence values for each detected object.
        hitThreshold - Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
        winStride - Window stride. It must be a multiple of block stride.
        padding - Padding
        scale - Coefficient of the detection window increase.
        groupThreshold - Coefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
      • detectMultiScale

        public void detectMultiScale​(Mat img,
                                     MatOfRect foundLocations,
                                     MatOfDouble foundWeights,
                                     double hitThreshold,
                                     Size winStride,
                                     Size padding,
                                     double scale)
        Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
        Parameters:
        img - Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
        foundLocations - Vector of rectangles where each rectangle contains the detected object.
        foundWeights - Vector that will contain confidence values for each detected object.
        hitThreshold - Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
        winStride - Window stride. It must be a multiple of block stride.
        padding - Padding
        scale - Coefficient of the detection window increase. by many rectangles. 0 means not to perform grouping.
      • detectMultiScale

        public void detectMultiScale​(Mat img,
                                     MatOfRect foundLocations,
                                     MatOfDouble foundWeights,
                                     double hitThreshold,
                                     Size winStride,
                                     Size padding)
        Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
        Parameters:
        img - Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
        foundLocations - Vector of rectangles where each rectangle contains the detected object.
        foundWeights - Vector that will contain confidence values for each detected object.
        hitThreshold - Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
        winStride - Window stride. It must be a multiple of block stride.
        padding - Padding by many rectangles. 0 means not to perform grouping.
      • detectMultiScale

        public void detectMultiScale​(Mat img,
                                     MatOfRect foundLocations,
                                     MatOfDouble foundWeights,
                                     double hitThreshold,
                                     Size winStride)
        Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
        Parameters:
        img - Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
        foundLocations - Vector of rectangles where each rectangle contains the detected object.
        foundWeights - Vector that will contain confidence values for each detected object.
        hitThreshold - Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
        winStride - Window stride. It must be a multiple of block stride. by many rectangles. 0 means not to perform grouping.
      • detectMultiScale

        public void detectMultiScale​(Mat img,
                                     MatOfRect foundLocations,
                                     MatOfDouble foundWeights,
                                     double hitThreshold)
        Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
        Parameters:
        img - Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
        foundLocations - Vector of rectangles where each rectangle contains the detected object.
        foundWeights - Vector that will contain confidence values for each detected object.
        hitThreshold - Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here. by many rectangles. 0 means not to perform grouping.
      • detectMultiScale

        public void detectMultiScale​(Mat img,
                                     MatOfRect foundLocations,
                                     MatOfDouble foundWeights)
        Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
        Parameters:
        img - Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
        foundLocations - Vector of rectangles where each rectangle contains the detected object.
        foundWeights - Vector that will contain confidence values for each detected object. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here. by many rectangles. 0 means not to perform grouping.
      • computeGradient

        public void computeGradient​(Mat img,
                                    Mat grad,
                                    Mat angleOfs,
                                    Size paddingTL,
                                    Size paddingBR)
        Computes gradients and quantized gradient orientations.
        Parameters:
        img - Matrix contains the image to be computed
        grad - Matrix of type CV_32FC2 contains computed gradients
        angleOfs - Matrix of type CV_8UC2 contains quantized gradient orientations
        paddingTL - Padding from top-left
        paddingBR - Padding from bottom-right
      • computeGradient

        public void computeGradient​(Mat img,
                                    Mat grad,
                                    Mat angleOfs,
                                    Size paddingTL)
        Computes gradients and quantized gradient orientations.
        Parameters:
        img - Matrix contains the image to be computed
        grad - Matrix of type CV_32FC2 contains computed gradients
        angleOfs - Matrix of type CV_8UC2 contains quantized gradient orientations
        paddingTL - Padding from top-left
      • computeGradient

        public void computeGradient​(Mat img,
                                    Mat grad,
                                    Mat angleOfs)
        Computes gradients and quantized gradient orientations.
        Parameters:
        img - Matrix contains the image to be computed
        grad - Matrix of type CV_32FC2 contains computed gradients
        angleOfs - Matrix of type CV_8UC2 contains quantized gradient orientations
      • getDefaultPeopleDetector

        public static MatOfFloat getDefaultPeopleDetector()
        Returns coefficients of the classifier trained for people detection (for 64x128 windows).
        Returns:
        automatically generated
      • getDaimlerPeopleDetector

        public static MatOfFloat getDaimlerPeopleDetector()
        Returns coefficients of the classifier trained for people detection (for 48x96 windows).
        Returns:
        automatically generated
      • get_winSize

        public Size get_winSize()
      • get_blockSize

        public Size get_blockSize()
      • get_blockStride

        public Size get_blockStride()
      • get_cellSize

        public Size get_cellSize()
      • get_nbins

        public int get_nbins()
      • get_derivAperture

        public int get_derivAperture()
      • get_winSigma

        public double get_winSigma()
      • get_histogramNormType

        public int get_histogramNormType()
      • get_L2HysThreshold

        public double get_L2HysThreshold()
      • get_gammaCorrection

        public boolean get_gammaCorrection()
      • get_svmDetector

        public MatOfFloat get_svmDetector()
      • get_nlevels

        public int get_nlevels()
      • get_signedGradient

        public boolean get_signedGradient()
      • finalize

        protected void finalize()
                         throws java.lang.Throwable
        Overrides:
        finalize in class java.lang.Object
        Throws:
        java.lang.Throwable