Class DISOpticalFlow


  • public class DISOpticalFlow
    extends DenseOpticalFlow
    DIS optical flow algorithm. This class implements the Dense Inverse Search (DIS) optical flow algorithm. More details about the algorithm can be found at CITE: Kroeger2016 . Includes three presets with preselected parameters to provide reasonable trade-off between speed and quality. However, even the slowest preset is still relatively fast, use DeepFlow if you need better quality and don't care about speed. This implementation includes several additional features compared to the algorithm described in the paper, including spatial propagation of flow vectors (REF: getUseSpatialPropagation), as well as an option to utilize an initial flow approximation passed to REF: calc (which is, essentially, temporal propagation, if the previous frame's flow field is passed).
    • Constructor Detail

      • DISOpticalFlow

        protected DISOpticalFlow​(long addr)
    • Method Detail

      • __fromPtr__

        public static DISOpticalFlow __fromPtr__​(long addr)
      • getFinestScale

        public int getFinestScale()
        Finest level of the Gaussian pyramid on which the flow is computed (zero level corresponds to the original image resolution). The final flow is obtained by bilinear upscaling. SEE: setFinestScale
        Returns:
        automatically generated
      • setFinestScale

        public void setFinestScale​(int val)
        getFinestScale SEE: getFinestScale
        Parameters:
        val - automatically generated
      • getPatchSize

        public int getPatchSize()
        Size of an image patch for matching (in pixels). Normally, default 8x8 patches work well enough in most cases. SEE: setPatchSize
        Returns:
        automatically generated
      • setPatchSize

        public void setPatchSize​(int val)
        getPatchSize SEE: getPatchSize
        Parameters:
        val - automatically generated
      • getPatchStride

        public int getPatchStride()
        Stride between neighbor patches. Must be less than patch size. Lower values correspond to higher flow quality. SEE: setPatchStride
        Returns:
        automatically generated
      • setPatchStride

        public void setPatchStride​(int val)
        getPatchStride SEE: getPatchStride
        Parameters:
        val - automatically generated
      • getGradientDescentIterations

        public int getGradientDescentIterations()
        Maximum number of gradient descent iterations in the patch inverse search stage. Higher values may improve quality in some cases. SEE: setGradientDescentIterations
        Returns:
        automatically generated
      • setGradientDescentIterations

        public void setGradientDescentIterations​(int val)
        getGradientDescentIterations SEE: getGradientDescentIterations
        Parameters:
        val - automatically generated
      • getVariationalRefinementIterations

        public int getVariationalRefinementIterations()
        Number of fixed point iterations of variational refinement per scale. Set to zero to disable variational refinement completely. Higher values will typically result in more smooth and high-quality flow. SEE: setGradientDescentIterations
        Returns:
        automatically generated
      • setVariationalRefinementIterations

        public void setVariationalRefinementIterations​(int val)
        getGradientDescentIterations SEE: getGradientDescentIterations
        Parameters:
        val - automatically generated
      • getVariationalRefinementAlpha

        public float getVariationalRefinementAlpha()
        Weight of the smoothness term SEE: setVariationalRefinementAlpha
        Returns:
        automatically generated
      • setVariationalRefinementAlpha

        public void setVariationalRefinementAlpha​(float val)
        getVariationalRefinementAlpha SEE: getVariationalRefinementAlpha
        Parameters:
        val - automatically generated
      • getVariationalRefinementDelta

        public float getVariationalRefinementDelta()
        Weight of the color constancy term SEE: setVariationalRefinementDelta
        Returns:
        automatically generated
      • setVariationalRefinementDelta

        public void setVariationalRefinementDelta​(float val)
        getVariationalRefinementDelta SEE: getVariationalRefinementDelta
        Parameters:
        val - automatically generated
      • getVariationalRefinementGamma

        public float getVariationalRefinementGamma()
        Weight of the gradient constancy term SEE: setVariationalRefinementGamma
        Returns:
        automatically generated
      • setVariationalRefinementGamma

        public void setVariationalRefinementGamma​(float val)
        getVariationalRefinementGamma SEE: getVariationalRefinementGamma
        Parameters:
        val - automatically generated
      • getVariationalRefinementEpsilon

        public float getVariationalRefinementEpsilon()
        Norm value shift for robust penalizer SEE: setVariationalRefinementEpsilon
        Returns:
        automatically generated
      • setVariationalRefinementEpsilon

        public void setVariationalRefinementEpsilon​(float val)
        getVariationalRefinementEpsilon SEE: getVariationalRefinementEpsilon
        Parameters:
        val - automatically generated
      • getUseMeanNormalization

        public boolean getUseMeanNormalization()
        Whether to use mean-normalization of patches when computing patch distance. It is turned on by default as it typically provides a noticeable quality boost because of increased robustness to illumination variations. Turn it off if you are certain that your sequence doesn't contain any changes in illumination. SEE: setUseMeanNormalization
        Returns:
        automatically generated
      • setUseMeanNormalization

        public void setUseMeanNormalization​(boolean val)
        getUseMeanNormalization SEE: getUseMeanNormalization
        Parameters:
        val - automatically generated
      • getUseSpatialPropagation

        public boolean getUseSpatialPropagation()
        Whether to use spatial propagation of good optical flow vectors. This option is turned on by default, as it tends to work better on average and can sometimes help recover from major errors introduced by the coarse-to-fine scheme employed by the DIS optical flow algorithm. Turning this option off can make the output flow field a bit smoother, however. SEE: setUseSpatialPropagation
        Returns:
        automatically generated
      • setUseSpatialPropagation

        public void setUseSpatialPropagation​(boolean val)
        getUseSpatialPropagation SEE: getUseSpatialPropagation
        Parameters:
        val - automatically generated
      • create

        public static DISOpticalFlow create​(int preset)
        Creates an instance of DISOpticalFlow
        Parameters:
        preset - one of PRESET_ULTRAFAST, PRESET_FAST and PRESET_MEDIUM
        Returns:
        automatically generated
      • create

        public static DISOpticalFlow create()
        Creates an instance of DISOpticalFlow
        Returns:
        automatically generated
      • finalize

        protected void finalize()
                         throws java.lang.Throwable
        Overrides:
        finalize in class DenseOpticalFlow
        Throws:
        java.lang.Throwable