Package org.opencv.features
Class AffineFeature
- java.lang.Object
-
- org.opencv.core.Algorithm
-
- org.opencv.features.Feature2D
-
- org.opencv.features.AffineFeature
-
public class AffineFeature extends Feature2D
Class for implementing the wrapper which makes detectors and extractors to be affine invariant, described as ASIFT in CITE: YM11 .
-
-
Constructor Summary
Constructors Modifier Constructor Description protectedAffineFeature(long addr)
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static AffineFeature__fromPtr__(long addr)static AffineFeaturecreate(Feature2D backend)static AffineFeaturecreate(Feature2D backend, int maxTilt)static AffineFeaturecreate(Feature2D backend, int maxTilt, int minTilt)static AffineFeaturecreate(Feature2D backend, int maxTilt, int minTilt, float tiltStep)static AffineFeaturecreate(Feature2D backend, int maxTilt, int minTilt, float tiltStep, float rotateStepBase)protected voidfinalize()java.lang.StringgetDefaultName()Returns the algorithm string identifier.voidgetViewParams(MatOfFloat tilts, MatOfFloat rolls)voidsetViewParams(MatOfFloat tilts, MatOfFloat rolls)-
Methods inherited from class org.opencv.features.Feature2D
compute, compute, defaultNorm, descriptorSize, descriptorType, detect, detect, detect, detect, detectAndCompute, detectAndCompute, empty, read, write
-
Methods inherited from class org.opencv.core.Algorithm
clear, getNativeObjAddr, save
-
-
-
-
Method Detail
-
__fromPtr__
public static AffineFeature __fromPtr__(long addr)
-
create
public static AffineFeature create(Feature2D backend, int maxTilt, int minTilt, float tiltStep, float rotateStepBase)
- Parameters:
backend- The detector/extractor you want to use as backend.maxTilt- The highest power index of tilt factor. 5 is used in the paper as tilt sampling range n.minTilt- The lowest power index of tilt factor. 0 is used in the paper.tiltStep- Tilt sampling step \(\delta_t\) in Algorithm 1 in the paper.rotateStepBase- Rotation sampling step factor b in Algorithm 1 in the paper.- Returns:
- automatically generated
-
create
public static AffineFeature create(Feature2D backend, int maxTilt, int minTilt, float tiltStep)
- Parameters:
backend- The detector/extractor you want to use as backend.maxTilt- The highest power index of tilt factor. 5 is used in the paper as tilt sampling range n.minTilt- The lowest power index of tilt factor. 0 is used in the paper.tiltStep- Tilt sampling step \(\delta_t\) in Algorithm 1 in the paper.- Returns:
- automatically generated
-
create
public static AffineFeature create(Feature2D backend, int maxTilt, int minTilt)
- Parameters:
backend- The detector/extractor you want to use as backend.maxTilt- The highest power index of tilt factor. 5 is used in the paper as tilt sampling range n.minTilt- The lowest power index of tilt factor. 0 is used in the paper.- Returns:
- automatically generated
-
create
public static AffineFeature create(Feature2D backend, int maxTilt)
- Parameters:
backend- The detector/extractor you want to use as backend.maxTilt- The highest power index of tilt factor. 5 is used in the paper as tilt sampling range n.- Returns:
- automatically generated
-
create
public static AffineFeature create(Feature2D backend)
- Parameters:
backend- The detector/extractor you want to use as backend.- Returns:
- automatically generated
-
setViewParams
public void setViewParams(MatOfFloat tilts, MatOfFloat rolls)
-
getViewParams
public void getViewParams(MatOfFloat tilts, MatOfFloat rolls)
-
getDefaultName
public java.lang.String getDefaultName()
Description copied from class:AlgorithmReturns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.- Overrides:
getDefaultNamein classFeature2D- Returns:
- automatically generated
-
-