This class represents high-level API for text detection DL networks compatible with DB model.  
 More...
|  | 
|  | TextDetectionModel_DB () | 
|  | 
|  | TextDetectionModel_DB (const Net &network) | 
|  | Create text detection algorithm from deep learning network. 
 | 
|  | 
|  | TextDetectionModel_DB (CV_WRAP_FILE_PATH const std::string &model, CV_WRAP_FILE_PATH const std::string &config="") | 
|  | Create text detection model from network represented in one of the supported formats. An order of modelandconfigarguments does not matter.
 | 
|  | 
| float | getBinaryThreshold () const | 
|  | 
| int | getMaxCandidates () const | 
|  | 
| float | getPolygonThreshold () const | 
|  | 
| double | getUnclipRatio () const | 
|  | 
| TextDetectionModel_DB & | setBinaryThreshold (float binaryThreshold) | 
|  | 
| TextDetectionModel_DB & | setMaxCandidates (int maxCandidates) | 
|  | 
| TextDetectionModel_DB & | setPolygonThreshold (float polygonThreshold) | 
|  | 
| TextDetectionModel_DB & | setUnclipRatio (double unclipRatio) | 
|  | 
| void | detect (InputArray frame, std::vector< std::vector< Point > > &detections) const | 
|  | 
| void | detect (InputArray frame, std::vector< std::vector< Point > > &detections, std::vector< float > &confidences) const | 
|  | Performs detection. 
 | 
|  | 
| void | detectTextRectangles (InputArray frame, std::vector< cv::RotatedRect > &detections) const | 
|  | 
| void | detectTextRectangles (InputArray frame, std::vector< cv::RotatedRect > &detections, std::vector< float > &confidences) const | 
|  | Performs detection. 
 | 
|  | 
|  | Model () | 
|  | 
|  | Model (const Model &)=default | 
|  | 
|  | Model (const Net &network) | 
|  | Create model from deep learning network. 
 | 
|  | 
|  | Model (CV_WRAP_FILE_PATH const String &model, CV_WRAP_FILE_PATH const String &config="") | 
|  | Create model from deep learning network represented in one of the supported formats. An order of modelandconfigarguments does not matter.
 | 
|  | 
|  | Model (Model &&)=default | 
|  | 
| Model & | enableWinograd (bool useWinograd) | 
|  | 
| Impl * | getImpl () const | 
|  | 
| Impl & | getImplRef () const | 
|  | 
| Net & | getNetwork_ () | 
|  | 
| Net & | getNetwork_ () const | 
|  | 
|  | operator Net & () const | 
|  | 
| Model & | operator= (const Model &)=default | 
|  | 
| Model & | operator= (Model &&)=default | 
|  | 
| void | predict (InputArray frame, OutputArrayOfArrays outs) const | 
|  | Given the inputframe, create input blob, run net and return the outputblobs.
 | 
|  | 
| Model & | setInputCrop (bool crop) | 
|  | Set flag crop for frame. 
 | 
|  | 
| Model & | setInputMean (const Scalar &mean) | 
|  | Set mean value for frame. 
 | 
|  | 
| void | setInputParams (double scale=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false) | 
|  | Set preprocessing parameters for frame. 
 | 
|  | 
| Model & | setInputScale (const Scalar &scale) | 
|  | Set scalefactor value for frame. 
 | 
|  | 
| Model & | setInputSize (const Size &size) | 
|  | Set input size for frame. 
 | 
|  | 
| Model & | setInputSize (int width, int height) | 
|  | 
| Model & | setInputSwapRB (bool swapRB) | 
|  | Set flag swapRB for frame. 
 | 
|  | 
| Model & | setOutputNames (const std::vector< String > &outNames) | 
|  | Set output names for frame. 
 | 
|  | 
| Model & | setPreferableBackend (dnn::Backend backendId) | 
|  | 
| Model & | setPreferableTarget (dnn::Target targetId) | 
|  | 
This class represents high-level API for text detection DL networks compatible with DB model. 
Related publications: [169] Paper: https://arxiv.org/abs/1911.08947 For more information about the hyper-parameters setting, please refer to https://github.com/MhLiao/DB
Configurable parameters:
- (float) binaryThreshold - The threshold of the binary map. It is usually set to 0.3.
- (float) polygonThreshold - The threshold of text polygons. It is usually set to 0.5, 0.6, and 0.7. Default is 0.5f
- (double) unclipRatio - The unclip ratio of the detected text region, which determines the output size. It is usually set to 2.0.
- (int) maxCandidates - The max number of the output results. 
- Examples
- samples/dnn/text_detection.cpp.