This class represents high-level API for text detection DL networks compatible with DB model.
More...
|
| TextDetectionModel_DB () |
|
| TextDetectionModel_DB (const Net &network) |
| Create text detection algorithm from deep learning network.
|
|
| TextDetectionModel_DB (CV_WRAP_FILE_PATH const std::string &model, CV_WRAP_FILE_PATH const std::string &config="") |
| Create text detection model from network represented in one of the supported formats. An order of model and config arguments does not matter.
|
|
float | getBinaryThreshold () const |
|
int | getMaxCandidates () const |
|
float | getPolygonThreshold () const |
|
double | getUnclipRatio () const |
|
TextDetectionModel_DB & | setBinaryThreshold (float binaryThreshold) |
|
TextDetectionModel_DB & | setMaxCandidates (int maxCandidates) |
|
TextDetectionModel_DB & | setPolygonThreshold (float polygonThreshold) |
|
TextDetectionModel_DB & | setUnclipRatio (double unclipRatio) |
|
void | detect (InputArray frame, std::vector< std::vector< Point > > &detections) const |
|
void | detect (InputArray frame, std::vector< std::vector< Point > > &detections, std::vector< float > &confidences) const |
| Performs detection.
|
|
void | detectTextRectangles (InputArray frame, std::vector< cv::RotatedRect > &detections) const |
|
void | detectTextRectangles (InputArray frame, std::vector< cv::RotatedRect > &detections, std::vector< float > &confidences) const |
| Performs detection.
|
|
| Model () |
|
| Model (const Model &)=default |
|
| Model (const Net &network) |
| Create model from deep learning network.
|
|
| Model (CV_WRAP_FILE_PATH const String &model, CV_WRAP_FILE_PATH const String &config="") |
| Create model from deep learning network represented in one of the supported formats. An order of model and config arguments does not matter.
|
|
| Model (Model &&)=default |
|
Model & | enableWinograd (bool useWinograd) |
|
Impl * | getImpl () const |
|
Impl & | getImplRef () const |
|
Net & | getNetwork_ () |
|
Net & | getNetwork_ () const |
|
| operator Net & () const |
|
Model & | operator= (const Model &)=default |
|
Model & | operator= (Model &&)=default |
|
void | predict (InputArray frame, OutputArrayOfArrays outs) const |
| Given the input frame, create input blob, run net and return the output blobs .
|
|
Model & | setInputCrop (bool crop) |
| Set flag crop for frame.
|
|
Model & | setInputMean (const Scalar &mean) |
| Set mean value for frame.
|
|
void | setInputParams (double scale=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false) |
| Set preprocessing parameters for frame.
|
|
Model & | setInputScale (const Scalar &scale) |
| Set scalefactor value for frame.
|
|
Model & | setInputSize (const Size &size) |
| Set input size for frame.
|
|
Model & | setInputSize (int width, int height) |
|
Model & | setInputSwapRB (bool swapRB) |
| Set flag swapRB for frame.
|
|
Model & | setOutputNames (const std::vector< String > &outNames) |
| Set output names for frame.
|
|
Model & | setPreferableBackend (dnn::Backend backendId) |
|
Model & | setPreferableTarget (dnn::Target targetId) |
|
This class represents high-level API for text detection DL networks compatible with DB model.
Related publications: [167] Paper: https://arxiv.org/abs/1911.08947 For more information about the hyper-parameters setting, please refer to https://github.com/MhLiao/DB
Configurable parameters:
- (float) binaryThreshold - The threshold of the binary map. It is usually set to 0.3.
- (float) polygonThreshold - The threshold of text polygons. It is usually set to 0.5, 0.6, and 0.7. Default is 0.5f
- (double) unclipRatio - The unclip ratio of the detected text region, which determines the output size. It is usually set to 2.0.
- (int) maxCandidates - The max number of the output results.
- Examples
- samples/dnn/text_detection.cpp.