OpenCV 5.0.0-pre
Open Source Computer Vision
Loading...
Searching...
No Matches
Geometric Image Transformations

Detailed Description

The functions in this section perform various geometrical transformations of 2D images. They do not change the image content but deform the pixel grid and map this deformed grid to the destination image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from destination to the source. That is, for each pixel \((x, y)\) of the destination image, the functions compute coordinates of the corresponding "donor" pixel in the source image and copy the pixel value:

\[\texttt{dst} (x,y)= \texttt{src} (f_x(x,y), f_y(x,y))\]

In case when you specify the forward mapping \(\left<g_x, g_y\right>: \texttt{src} \rightarrow \texttt{dst}\), the OpenCV functions first compute the corresponding inverse mapping \(\left<f_x, f_y\right>: \texttt{dst} \rightarrow \texttt{src}\) and then use the above formula.

The actual implementations of the geometrical transformations, from the most generic remap and to the simplest and the fastest resize, need to solve two main problems with the above formula:

Note
The geometrical transformations do not work with CV_8S or CV_32S images.

Enumerations

enum  cv::InterpolationFlags {
  cv::INTER_NEAREST = 0 ,
  cv::INTER_LINEAR = 1 ,
  cv::INTER_CUBIC = 2 ,
  cv::INTER_AREA = 3 ,
  cv::INTER_LANCZOS4 = 4 ,
  cv::INTER_LINEAR_EXACT = 5 ,
  cv::INTER_NEAREST_EXACT = 6 ,
  cv::INTER_MAX = 7 ,
  cv::WARP_FILL_OUTLIERS = 8 ,
  cv::WARP_INVERSE_MAP = 16 ,
  cv::WARP_RELATIVE_MAP = 32
}
 interpolation algorithm More...
 
enum  cv::InterpolationMasks {
  cv::INTER_BITS = 5 ,
  cv::INTER_BITS2 = INTER_BITS * 2 ,
  cv::INTER_TAB_SIZE = 1 << INTER_BITS ,
  cv::INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
}
 
enum  cv::WarpPolarMode {
  cv::WARP_POLAR_LINEAR = 0 ,
  cv::WARP_POLAR_LOG = 256
}
 Specify the polar mapping mode. More...
 

Functions

void cv::convertMaps (InputArray map1, InputArray map2, OutputArray dstmap1, OutputArray dstmap2, int dstmap1type, bool nninterpolation=false)
 Converts image transformation maps from one representation to another.
 
Mat cv::getAffineTransform (const Point2f src[], const Point2f dst[])
 Calculates an affine transform from three pairs of the corresponding points.
 
Mat cv::getAffineTransform (InputArray src, InputArray dst)
 
Mat cv::getPerspectiveTransform (const Point2f src[], const Point2f dst[], int solveMethod=DECOMP_LU)
 
Mat cv::getPerspectiveTransform (InputArray src, InputArray dst, int solveMethod=DECOMP_LU)
 Calculates a perspective transform from four pairs of the corresponding points.
 
void cv::getRectSubPix (InputArray image, Size patchSize, Point2f center, OutputArray patch, int patchType=-1)
 Retrieves a pixel rectangle from an image with sub-pixel accuracy.
 
Mat cv::getRotationMatrix2D (Point2f center, double angle, double scale)
 Calculates an affine matrix of 2D rotation.
 
Matx23d cv::getRotationMatrix2D_ (Point2f center, double angle, double scale)
 
void cv::invertAffineTransform (InputArray M, OutputArray iM)
 Inverts an affine transformation.
 
void cv::linearPolar (InputArray src, OutputArray dst, Point2f center, double maxRadius, int flags)
 Remaps an image to polar coordinates space.
 
void cv::logPolar (InputArray src, OutputArray dst, Point2f center, double M, int flags)
 Remaps an image to semilog-polar coordinates space.
 
void cv::remap (InputArray src, OutputArray dst, InputArray map1, InputArray map2, int interpolation, int borderMode=BORDER_CONSTANT, const Scalar &borderValue=Scalar(), AlgorithmHint hint=cv::ALGO_HINT_DEFAULT)
 Applies a generic geometrical transformation to an image.
 
void cv::resize (InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR)
 Resizes an image.
 
void cv::warpAffine (InputArray src, OutputArray dst, InputArray M, Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar &borderValue=Scalar(), AlgorithmHint hint=cv::ALGO_HINT_DEFAULT)
 Applies an affine transformation to an image.
 
void cv::warpPerspective (InputArray src, OutputArray dst, InputArray M, Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar &borderValue=Scalar(), AlgorithmHint hint=cv::ALGO_HINT_DEFAULT)
 Applies a perspective transformation to an image.
 
void cv::warpPolar (InputArray src, OutputArray dst, Size dsize, Point2f center, double maxRadius, int flags)
 Remaps an image to polar or semilog-polar coordinates space.
 

Enumeration Type Documentation

◆ InterpolationFlags

#include <opencv2/imgproc.hpp>

interpolation algorithm

Enumerator
INTER_NEAREST 
Python: cv.INTER_NEAREST

nearest neighbor interpolation

INTER_LINEAR 
Python: cv.INTER_LINEAR

bilinear interpolation

INTER_CUBIC 
Python: cv.INTER_CUBIC

bicubic interpolation

INTER_AREA 
Python: cv.INTER_AREA

resampling using pixel area relation. It may be a preferred method for image decimation, as it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST method.

INTER_LANCZOS4 
Python: cv.INTER_LANCZOS4

Lanczos interpolation over 8x8 neighborhood

INTER_LINEAR_EXACT 
Python: cv.INTER_LINEAR_EXACT

Bit exact bilinear interpolation

INTER_NEAREST_EXACT 
Python: cv.INTER_NEAREST_EXACT

Bit exact nearest neighbor interpolation. This will produce same results as the nearest neighbor method in PIL, scikit-image or Matlab.

INTER_MAX 
Python: cv.INTER_MAX

mask for interpolation codes

WARP_FILL_OUTLIERS 
Python: cv.WARP_FILL_OUTLIERS

flag, fills all of the destination image pixels. If some of them correspond to outliers in the source image, they are set to zero

WARP_INVERSE_MAP 
Python: cv.WARP_INVERSE_MAP

flag, inverse transformation

For example, linearPolar or logPolar transforms:

  • flag is not set: \(dst( \rho , \phi ) = src(x,y)\)
  • flag is set: \(dst(x,y) = src( \rho , \phi )\)
WARP_RELATIVE_MAP 
Python: cv.WARP_RELATIVE_MAP

◆ InterpolationMasks

#include <opencv2/imgproc.hpp>

Enumerator
INTER_BITS 
Python: cv.INTER_BITS
INTER_BITS2 
Python: cv.INTER_BITS2
INTER_TAB_SIZE 
Python: cv.INTER_TAB_SIZE
INTER_TAB_SIZE2 
Python: cv.INTER_TAB_SIZE2

◆ WarpPolarMode

#include <opencv2/imgproc.hpp>

Specify the polar mapping mode.

See also
warpPolar
Enumerator
WARP_POLAR_LINEAR 
Python: cv.WARP_POLAR_LINEAR

Remaps an image to/from polar space.

WARP_POLAR_LOG 
Python: cv.WARP_POLAR_LOG

Remaps an image to/from semilog-polar space.

Function Documentation

◆ convertMaps()

void cv::convertMaps ( InputArray map1,
InputArray map2,
OutputArray dstmap1,
OutputArray dstmap2,
int dstmap1type,
bool nninterpolation = false )
Python:
cv.convertMaps(map1, map2, dstmap1type[, dstmap1[, dstmap2[, nninterpolation]]]) -> dstmap1, dstmap2

#include <opencv2/imgproc.hpp>

Converts image transformation maps from one representation to another.

The function converts a pair of maps for remap from one representation to another. The following options ( (map1.type(), map2.type()) \(\rightarrow\) (dstmap1.type(), dstmap2.type()) ) are supported:

  • \(\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\). This is the most frequently used conversion operation, in which the original floating-point maps (see remap) are converted to a more compact and much faster fixed-point representation. The first output array contains the rounded coordinates and the second array (created only when nninterpolation=false ) contains indices in the interpolation tables.
  • \(\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\). The same as above but the original maps are stored in one 2-channel matrix.
  • Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same as the originals.
Parameters
map1The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
map2The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix), respectively.
dstmap1The first output map that has the type dstmap1type and the same size as src .
dstmap2The second output map.
dstmap1typeType of the first output map that should be CV_16SC2, CV_32FC1, or CV_32FC2 .
nninterpolationFlag indicating whether the fixed-point maps are used for the nearest-neighbor or for a more complex interpolation.
See also
remap, undistort, initUndistortRectifyMap

◆ getAffineTransform() [1/2]

Mat cv::getAffineTransform ( const Point2f src[],
const Point2f dst[] )
Python:
cv.getAffineTransform(src, dst) -> retval

#include <opencv2/imgproc.hpp>

Calculates an affine transform from three pairs of the corresponding points.

The function calculates the \(2 \times 3\) matrix of an affine transform so that:

\[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\]

where

\[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\]

Parameters
srcCoordinates of triangle vertices in the source image.
dstCoordinates of the corresponding triangle vertices in the destination image.
See also
warpAffine, transform

◆ getAffineTransform() [2/2]

Mat cv::getAffineTransform ( InputArray src,
InputArray dst )
Python:
cv.getAffineTransform(src, dst) -> retval

#include <opencv2/imgproc.hpp>

◆ getPerspectiveTransform() [1/2]

Mat cv::getPerspectiveTransform ( const Point2f src[],
const Point2f dst[],
int solveMethod = DECOMP_LU )
Python:
cv.getPerspectiveTransform(src, dst[, solveMethod]) -> retval

#include <opencv2/imgproc.hpp>

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

◆ getPerspectiveTransform() [2/2]

Mat cv::getPerspectiveTransform ( InputArray src,
InputArray dst,
int solveMethod = DECOMP_LU )
Python:
cv.getPerspectiveTransform(src, dst[, solveMethod]) -> retval

#include <opencv2/imgproc.hpp>

Calculates a perspective transform from four pairs of the corresponding points.

The function calculates the \(3 \times 3\) matrix of a perspective transform so that:

\[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\]

where

\[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\]

Parameters
srcCoordinates of quadrangle vertices in the source image.
dstCoordinates of the corresponding quadrangle vertices in the destination image.
solveMethodmethod passed to cv::solve (DecompTypes)
See also
findHomography, warpPerspective, perspectiveTransform

◆ getRectSubPix()

void cv::getRectSubPix ( InputArray image,
Size patchSize,
Point2f center,
OutputArray patch,
int patchType = -1 )
Python:
cv.getRectSubPix(image, patchSize, center[, patch[, patchType]]) -> patch

#include <opencv2/imgproc.hpp>

Retrieves a pixel rectangle from an image with sub-pixel accuracy.

The function getRectSubPix extracts pixels from src:

\[patch(x, y) = src(x + \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\]

where the values of the pixels at non-integer coordinates are retrieved using bilinear interpolation. Every channel of multi-channel images is processed independently. Also the image should be a single channel or three channel image. While the center of the rectangle must be inside the image, parts of the rectangle may be outside.

Parameters
imageSource image.
patchSizeSize of the extracted patch.
centerFloating point coordinates of the center of the extracted rectangle within the source image. The center must be inside the image.
patchExtracted patch that has the size patchSize and the same number of channels as src .
patchTypeDepth of the extracted pixels. By default, they have the same depth as src .
See also
warpAffine, warpPerspective

◆ getRotationMatrix2D()

Mat cv::getRotationMatrix2D ( Point2f center,
double angle,
double scale )
inline
Python:
cv.getRotationMatrix2D(center, angle, scale) -> retval

#include <opencv2/imgproc.hpp>

Calculates an affine matrix of 2D rotation.

The function calculates the following matrix:

\[\begin{bmatrix} \alpha & \beta & (1- \alpha ) \cdot \texttt{center.x} - \beta \cdot \texttt{center.y} \\ - \beta & \alpha & \beta \cdot \texttt{center.x} + (1- \alpha ) \cdot \texttt{center.y} \end{bmatrix}\]

where

\[\begin{array}{l} \alpha = \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta = \texttt{scale} \cdot \sin \texttt{angle} \end{array}\]

The transformation maps the rotation center to itself. If this is not the target, adjust the shift.

Parameters
centerCenter of the rotation in the source image.
angleRotation angle in degrees. Positive values mean counter-clockwise rotation (the coordinate origin is assumed to be the top-left corner).
scaleIsotropic scale factor.
See also
getAffineTransform, warpAffine, transform
Here is the call graph for this function:

◆ getRotationMatrix2D_()

Matx23d cv::getRotationMatrix2D_ ( Point2f center,
double angle,
double scale )

◆ invertAffineTransform()

void cv::invertAffineTransform ( InputArray M,
OutputArray iM )
Python:
cv.invertAffineTransform(M[, iM]) -> iM

#include <opencv2/imgproc.hpp>

Inverts an affine transformation.

The function computes an inverse affine transformation represented by \(2 \times 3\) matrix M:

\[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}\]

The result is also a \(2 \times 3\) matrix of the same type as M.

Parameters
MOriginal affine transformation.
iMOutput reverse affine transformation.

◆ linearPolar()

void cv::linearPolar ( InputArray src,
OutputArray dst,
Point2f center,
double maxRadius,
int flags )
Python:
cv.linearPolar(src, center, maxRadius, flags[, dst]) -> dst

#include <opencv2/imgproc.hpp>

Remaps an image to polar coordinates space.

Deprecated
This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags)

◆ logPolar()

void cv::logPolar ( InputArray src,
OutputArray dst,
Point2f center,
double M,
int flags )
Python:
cv.logPolar(src, center, M, flags[, dst]) -> dst

#include <opencv2/imgproc.hpp>

Remaps an image to semilog-polar coordinates space.

Deprecated
This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG);

◆ remap()

void cv::remap ( InputArray src,
OutputArray dst,
InputArray map1,
InputArray map2,
int interpolation,
int borderMode = BORDER_CONSTANT,
const Scalar & borderValue = Scalar(),
AlgorithmHint hint = cv::ALGO_HINT_DEFAULT )
Python:
cv.remap(src, map1, map2, interpolation[, dst[, borderMode[, borderValue[, hint]]]]) -> dst

#include <opencv2/imgproc.hpp>

Applies a generic geometrical transformation to an image.

The function remap transforms the source image using the specified map:

\[\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\]

with the WARP_RELATIVE_MAP flag :

\[\texttt{dst} (x,y) = \texttt{src} (x+map_x(x,y),y+map_y(x,y))\]

where values of pixels with non-integer coordinates are computed using one of available interpolation methods. \(map_x\) and \(map_y\) can be encoded as separate floating-point maps in \(map_1\) and \(map_2\) respectively, or interleaved floating-point maps of \((x,y)\) in \(map_1\), or fixed-point maps created by using convertMaps. The reason you might want to convert from floating to fixed-point representations of a map is that they can yield much faster (2x) remapping operations. In the converted case, \(map_1\) contains pairs (cvFloor(x), cvFloor(y)) and \(map_2\) contains indices in a table of interpolation coefficients.

This function cannot operate in-place.

Parameters
srcSource image.
dstDestination image. It has the same size as map1 and the same type as src .
map1The first map of either (x,y) points or just x values having the type CV_16SC2 , CV_32FC1, or CV_32FC2. See convertMaps for details on converting a floating point representation to fixed-point for speed.
map2The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map if map1 is (x,y) points), respectively.
interpolationInterpolation method (see InterpolationFlags). The methods INTER_AREA INTER_LINEAR_EXACT and INTER_NEAREST_EXACT are not supported by this function. The extra flag WARP_RELATIVE_MAP can be ORed to the interpolation method (e.g. INTER_LINEAR | WARP_RELATIVE_MAP)
borderModePixel extrapolation method (see BorderTypes). When borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image that corresponds to the "outliers" in the source image are not modified by the function.
borderValueValue used in case of a constant border. By default, it is 0.
hintImplementation modification flags. Set ALGO_HINT_APPROX to use FP16 precision (if available) for linear calculation for faster speed. See AlgorithmHint.
Note
Due to current implementation limitations the size of an input and output images should be less than 32767x32767.

◆ resize()

void cv::resize ( InputArray src,
OutputArray dst,
Size dsize,
double fx = 0,
double fy = 0,
int interpolation = INTER_LINEAR )
Python:
cv.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) -> dst

#include <opencv2/imgproc.hpp>

Resizes an image.

The function resize resizes the image src down to or up to the specified size. Note that the initial dst type or size are not taken into account. Instead, the size and type are derived from the src,dsize,fx, and fy. If you want to resize src so that it fits the pre-created dst, you may call the function as follows:

// explicitly specify dsize=dst.size(); fx and fy will be computed from that.
resize(src, dst, dst.size(), 0, 0, interpolation);
void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR)
Resizes an image.

If you want to decimate the image by factor of 2 in each direction, you can call the function this way:

// specify fx and fy and let the function compute the destination image size.
resize(src, dst, Size(), 0.5, 0.5, interpolation);
Size2i Size
Definition types.hpp:373

To shrink an image, it will generally look best with INTER_AREA interpolation, whereas to enlarge an image, it will generally look best with INTER_CUBIC (slow) or INTER_LINEAR (faster but still looks OK).

Parameters
srcinput image.
dstoutput image; it has the size dsize (when it is non-zero) or the size computed from src.size(), fx, and fy; the type of dst is the same as of src.
dsizeoutput image size; if it equals zero (None in Python), it is computed as:

\[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\]

Either dsize or both fx and fy must be non-zero.
fxscale factor along the horizontal axis; when it equals 0, it is computed as

\[\texttt{(double)dsize.width/src.cols}\]

fyscale factor along the vertical axis; when it equals 0, it is computed as

\[\texttt{(double)dsize.height/src.rows}\]

interpolationinterpolation method, see InterpolationFlags
See also
warpAffine, warpPerspective, remap

◆ warpAffine()

void cv::warpAffine ( InputArray src,
OutputArray dst,
InputArray M,
Size dsize,
int flags = INTER_LINEAR,
int borderMode = BORDER_CONSTANT,
const Scalar & borderValue = Scalar(),
AlgorithmHint hint = cv::ALGO_HINT_DEFAULT )
Python:
cv.warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue[, hint]]]]]) -> dst

#include <opencv2/imgproc.hpp>

Applies an affine transformation to an image.

The function warpAffine transforms the source image using the specified matrix:

\[\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\]

when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invertAffineTransform and then put in the formula above instead of M. The function cannot operate in-place.

Parameters
srcinput image.
dstoutput image that has the size dsize and the same type as src .
M\(2\times 3\) transformation matrix.
dsizesize of the output image.
flagscombination of interpolation methods (see InterpolationFlags) and the optional flag WARP_INVERSE_MAP that means that M is the inverse transformation ( \(\texttt{dst}\rightarrow\texttt{src}\) ).
borderModepixel extrapolation method (see BorderTypes); when borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to the "outliers" in the source image are not modified by the function.
borderValuevalue used in case of a constant border; by default, it is 0.
hintImplementation modification flags. Set ALGO_HINT_APPROX to use FP16 precision (if available) for linear calculation for faster speed. See AlgorithmHint.
See also
warpPerspective, resize, remap, getRectSubPix, transform

◆ warpPerspective()

void cv::warpPerspective ( InputArray src,
OutputArray dst,
InputArray M,
Size dsize,
int flags = INTER_LINEAR,
int borderMode = BORDER_CONSTANT,
const Scalar & borderValue = Scalar(),
AlgorithmHint hint = cv::ALGO_HINT_DEFAULT )
Python:
cv.warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue[, hint]]]]]) -> dst

#include <opencv2/imgproc.hpp>

Applies a perspective transformation to an image.

The function warpPerspective transforms the source image using the specified matrix:

\[\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} , \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\]

when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert and then put in the formula above instead of M. The function cannot operate in-place.

Parameters
srcinput image.
dstoutput image that has the size dsize and the same type as src .
M\(3\times 3\) transformation matrix.
dsizesize of the output image.
flagscombination of interpolation methods (INTER_LINEAR or INTER_NEAREST) and the optional flag WARP_INVERSE_MAP, that sets M as the inverse transformation ( \(\texttt{dst}\rightarrow\texttt{src}\) ).
borderModepixel extrapolation method (BORDER_CONSTANT or BORDER_REPLICATE).
borderValuevalue used in case of a constant border; by default, it equals 0.
hintImplementation modification flags. Set ALGO_HINT_APPROX to use FP16 precision (if available) for linear calculation for faster speed. See AlgorithmHint.
See also
warpAffine, resize, remap, getRectSubPix, perspectiveTransform

◆ warpPolar()

void cv::warpPolar ( InputArray src,
OutputArray dst,
Size dsize,
Point2f center,
double maxRadius,
int flags )
Python:
cv.warpPolar(src, dsize, center, maxRadius, flags[, dst]) -> dst

#include <opencv2/imgproc.hpp>

Remaps an image to polar or semilog-polar coordinates space.

Transform the source image using the following transformation:

\[ dst(\rho , \phi ) = src(x,y) \]

where

\[ \begin{array}{l} \vec{I} = (x - center.x, \;y - center.y) \\ \phi = Kangle \cdot \texttt{angle} (\vec{I}) \\ \rho = \left\{\begin{matrix} Klin \cdot \texttt{magnitude} (\vec{I}) & default \\ Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\ \end{matrix}\right. \end{array} \]

and

\[ \begin{array}{l} Kangle = dsize.height / 2\Pi \\ Klin = dsize.width / maxRadius \\ Klog = dsize.width / log_e(maxRadius) \\ \end{array} \]

Linear vs semilog mapping

Polar mapping can be linear or semi-log. Add one of WarpPolarMode to flags to specify the polar mapping mode.

Linear is the default mode.

The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision) in contrast to peripheral vision where acuity is minor.

Option on dsize:
  • if both values in dsize <=0 (default), the destination image will have (almost) same area of source bounding circle:

    \[\begin{array}{l} dsize.area \leftarrow (maxRadius^2 \cdot \Pi) \\ dsize.width = \texttt{cvRound}(maxRadius) \\ dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\ \end{array}\]

  • if only dsize.height <= 0, the destination image area will be proportional to the bounding circle area but scaled by Kx * Kx:

    \[\begin{array}{l} dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\ \end{array} \]

  • if both values in dsize > 0, the destination image will have the given size therefore the area of the bounding circle will be scaled to dsize.
Reverse mapping

You can get reverse mapping adding WARP_INVERSE_MAP to flags

// direct transform
warpPolar(src, lin_polar_img, Size(),center, maxRadius, flags); // linear Polar
warpPolar(src, log_polar_img, Size(),center, maxRadius, flags + WARP_POLAR_LOG); // semilog Polar
// inverse transform
warpPolar(lin_polar_img, recovered_lin_polar_img, src.size(), center, maxRadius, flags + WARP_INVERSE_MAP);
warpPolar(log_polar_img, recovered_log_polar, src.size(), center, maxRadius, flags + WARP_POLAR_LOG + WARP_INVERSE_MAP);

In addition, to calculate the original coordinate from a polar mapped coordinate \((rho, phi)->(x, y)\):

double angleRad, magnitude;
double Kangle = dst.rows / CV_2PI;
angleRad = phi / Kangle;
if (flags & WARP_POLAR_LOG)
{
double Klog = dst.cols / std::log(maxRadius);
magnitude = std::exp(rho / Klog);
}
else
{
double Klin = dst.cols / maxRadius;
magnitude = rho / Klin;
}
int x = cvRound(center.x + magnitude * cos(angleRad));
int y = cvRound(center.y + magnitude * sin(angleRad));
Parameters
srcSource image.
dstDestination image. It will have same type as src.
dsizeThe destination image size (see description for valid options).
centerThe transformation center.
maxRadiusThe radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
flagsA combination of interpolation methods, InterpolationFlags + WarpPolarMode.
Note
  • The function can not operate in-place.
  • To calculate magnitude and angle in degrees cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
  • This function uses remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
See also
cv::remap