OpenCV  5.0.0-pre
Open Source Computer Vision
Loading...
Searching...
No Matches
Classes | Typedefs | Enumerations | Functions

Detailed Description

Classes

class  cv::DualQuat< _Tp >
 
class  cv::Quat< _Tp >
 
class  cv::QuatEnum
 

Typedefs

using cv::DualQuatd = DualQuat< double >
 
using cv::DualQuatf = DualQuat< float >
 
using cv::Quatd = Quat< double >
 
using cv::Quatf = Quat< float >
 

Enumerations

enum  cv::QuatAssumeType {
  cv::QUAT_ASSUME_NOT_UNIT ,
  cv::QUAT_ASSUME_UNIT
}
 Unit quaternion flag. More...
 

Functions

template<typename T >
Quat< T > cv::acos (const Quat< T > &q)
 
template<typename T >
Quat< T > cv::acosh (const Quat< T > &q)
 
template<typename T >
Quat< T > cv::asin (const Quat< T > &q)
 
template<typename T >
Quat< T > cv::asinh (const Quat< T > &q)
 
template<typename T >
Quat< T > cv::atan (const Quat< T > &q)
 
template<typename T >
Quat< T > cv::atanh (const Quat< T > &q)
 
template<typename T >
Quat< T > cv::cos (const Quat< T > &q)
 
template<typename T >
Quat< T > cv::cosh (const Quat< T > &q)
 
template<typename T >
Quat< T > cv::crossProduct (const Quat< T > &p, const Quat< T > &q)
 
template<typename T >
Quat< T > cv::exp (const Quat< T > &q)
 
template<typename T >
Quat< T > cv::inv (const Quat< T > &q, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT)
 
template<typename T >
Quat< T > cv::log (const Quat< T > &q, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT)
 
template<typename T >
Quat< T > cv::operator* (const Quat< T > &, const T)
 
template<typename T >
Quat< T > cv::operator* (const T, const Quat< T > &)
 
template<typename _Tp >
std::ostream & cv::operator<< (std::ostream &, const DualQuat< _Tp > &)
 
template<typename _Tp >
std::ostream & cv::operator<< (std::ostream &, const Quat< _Tp > &)
 
template<typename S >
std::ostream & cv::operator<< (std::ostream &, const Quat< S > &)
 
template<typename T >
Quat< T > cv::power (const Quat< T > &q, const Quat< T > &p, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT)
 
template<typename T >
Quat< T > cv::power (const Quat< T > &q, const T x, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT)
 
template<typename T >
Quat< T > cv::sin (const Quat< T > &q)
 
template<typename T >
Quat< T > cv::sinh (const Quat< T > &q)
 
template<typename S >
Quat< S > cv::sqrt (const Quat< S > &q, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT)
 
template<typename T >
Quat< T > cv::tan (const Quat< T > &q)
 
template<typename T >
Quat< T > cv::tanh (const Quat< T > &q)
 

Typedef Documentation

◆ DualQuatd

using cv::DualQuatd = typedef DualQuat<double>

◆ DualQuatf

using cv::DualQuatf = typedef DualQuat<float>

◆ Quatd

using cv::Quatd = typedef Quat<double>

◆ Quatf

using cv::Quatf = typedef Quat<float>

Enumeration Type Documentation

◆ QuatAssumeType

#include <opencv2/core/quaternion.hpp>

Unit quaternion flag.

Enumerator
QUAT_ASSUME_NOT_UNIT 
Python: cv.QUAT_ASSUME_NOT_UNIT

This flag is specified by default. If this flag is specified, the input quaternions are assumed to be not unit quaternions. It can guarantee the correctness of the calculations, although the calculation speed will be slower than the flag QUAT_ASSUME_UNIT.

QUAT_ASSUME_UNIT 
Python: cv.QUAT_ASSUME_UNIT

If this flag is specified, the input quaternions are assumed to be unit quaternions which will save some computations. However, if this flag is specified without unit quaternion, the program correctness of the result will not be guaranteed.

Function Documentation

◆ acos()

template<typename T >
Quat< T > cv::acos ( const Quat< T > &  q)

#include <opencv2/core/quaternion.hpp>

\[\arccos(q) = -\frac{\boldsymbol{v}}{||\boldsymbol{v}||}arccosh(q)\]

where \(\boldsymbol{v} = [x, y, z].\)

Parameters
qa quaternion.

For example

Quatd q(1,2,3,4);
acos(q);
Definition quaternion.hpp:211
Quat< T > acos(const Quat< T > &q)

◆ acosh()

template<typename T >
Quat< T > cv::acosh ( const Quat< T > &  q)

#include <opencv2/core/quaternion.hpp>

\[arccosh(q) = \ln(q + \sqrt{q^2 - 1})\]

.

Parameters
qa quaternion.

For example

Quatd q(1,2,3,4);
acosh(q);
Quat< T > acosh(const Quat< T > &q)

◆ asin()

template<typename T >
Quat< T > cv::asin ( const Quat< T > &  q)

#include <opencv2/core/quaternion.hpp>

\[\arcsin(q) = -\frac{\boldsymbol{v}}{||\boldsymbol{v}||}arcsinh(q\frac{\boldsymbol{v}}{||\boldsymbol{v}||})\]

where \(\boldsymbol{v} = [x, y, z].\)

Parameters
qa quaternion.

For example

Quatd q(1,2,3,4);
asin(q);
Quat< T > asin(const Quat< T > &q)

◆ asinh()

template<typename T >
Quat< T > cv::asinh ( const Quat< T > &  q)

#include <opencv2/core/quaternion.hpp>

\[arcsinh(q) = \ln(q + \sqrt{q^2 + 1})\]

.

Parameters
qa quaternion.

For example

Quatd q(1,2,3,4);
asinh(q);
Quat< T > asinh(const Quat< T > &q)

◆ atan()

template<typename T >
Quat< T > cv::atan ( const Quat< T > &  q)

#include <opencv2/core/quaternion.hpp>

\[\arctan(q) = -\frac{\boldsymbol{v}}{||\boldsymbol{v}||}arctanh(q\frac{\boldsymbol{v}}{||\boldsymbol{v}||})\]

where \(\boldsymbol{v} = [x, y, z].\)

Parameters
qa quaternion.

For example

Quatd q(1,2,3,4);
atan(q);
Quat< T > atan(const Quat< T > &q)

◆ atanh()

template<typename T >
Quat< T > cv::atanh ( const Quat< T > &  q)

#include <opencv2/core/quaternion.hpp>

\[arctanh(q) = \frac{\ln(q + 1) - \ln(1 - q)}{2}\]

.

Parameters
qa quaternion.

For example

Quatd q(1,2,3,4);
atanh(q);
Quat< T > atanh(const Quat< T > &q)

◆ cos()

template<typename T >
Quat< T > cv::cos ( const Quat< T > &  q)

#include <opencv2/core/quaternion.hpp>

\[\cos(p) = \cos(w) * \cosh(||\boldsymbol{v}||) - \sin(w)\frac{\boldsymbol{v}}{||\boldsymbol{v}||}\sinh(||\boldsymbol{v}||)\]

where \(\boldsymbol{v} = [x, y, z].\)

Parameters
qa quaternion.

For example

Quatd q(1,2,3,4);
cos(q);
Quat< T > cos(const Quat< T > &q)

◆ cosh()

template<typename T >
Quat< T > cv::cosh ( const Quat< T > &  q)

#include <opencv2/core/quaternion.hpp>

\[\cosh(p) = \cosh(w) * \cos(||\boldsymbol{v}||) + \sinh(w)\frac{\boldsymbol{v}}{||\boldsymbol{v}||}\sin(||\boldsymbol{v}||)\]

where \(\boldsymbol{v} = [x, y, z].\)

Parameters
qa quaternion.

For example

Quatd q(1,2,3,4);
cosh(q);
Quat< T > cosh(const Quat< T > &q)

◆ crossProduct()

template<typename T >
Quat< T > cv::crossProduct ( const Quat< T > &  p,
const Quat< T > &  q 
)

#include <opencv2/core/quaternion.hpp>

\[p \times q = \frac{pq- qp}{2}\]

\[p \times q = \boldsymbol{u} \times \boldsymbol{v}\]

\[p \times q = (cz-dy)i + (dx-bz)j + (by-xc)k \]

For example

Quatd q{1,2,3,4};
Quatd p{5,6,7,8};
Quat< T > crossProduct(const Quat< T > &p, const Quat< T > &q)
Quat< double > Quatd
Definition quaternion.hpp:1688

◆ exp()

template<typename T >
Quat< T > cv::exp ( const Quat< T > &  q)
Python:
cv.exp(src[, dst]) -> dst

#include <opencv2/core/quaternion.hpp>

\[\exp(q) = e^w (\cos||\boldsymbol{v}||+ \frac{v}{||\boldsymbol{v}||})\sin||\boldsymbol{v}||\]

where \(\boldsymbol{v} = [x, y, z].\)

Parameters
qa quaternion.

For example:

Quatd q{1,2,3,4};
cout << exp(q) << endl;
Here is the call graph for this function:

◆ inv()

template<typename T >
Quat< T > cv::inv ( const Quat< T > &  q,
QuatAssumeType  assumeUnit = QUAT_ASSUME_NOT_UNIT 
)

#include <opencv2/core/quaternion.hpp>

Parameters
qa quaternion.
assumeUnitif QUAT_ASSUME_UNIT, quaternion q assume to be a unit quaternion and this function will save some computations.

For example

Quatd q(1,2,3,4);
inv(q);
q = q.normalize();
inv(q, assumeUnit);//This assumeUnit means p is a unit quaternion
Quat< T > inv(const Quat< T > &q, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT)
QuatAssumeType
Unit quaternion flag.
Definition quaternion.hpp:39
@ QUAT_ASSUME_UNIT
Definition quaternion.hpp:52

◆ log()

template<typename T >
Quat< T > cv::log ( const Quat< T > &  q,
QuatAssumeType  assumeUnit = QUAT_ASSUME_NOT_UNIT 
)
Python:
cv.log(src[, dst]) -> dst

#include <opencv2/core/quaternion.hpp>

\[\ln(q) = \ln||q|| + \frac{\boldsymbol{v}}{||\boldsymbol{v}||}\arccos\frac{w}{||q||}.\]

where \(\boldsymbol{v} = [x, y, z].\)

Parameters
qa quaternion.
assumeUnitif QUAT_ASSUME_UNIT, q assume to be a unit quaternion and this function will save some computations.

For example

Quatd q1{1,2,3,4};
cout << log(q1) << endl;
Here is the call graph for this function:

◆ operator*() [1/2]

template<typename T >
Quat< T > cv::operator* ( const Quat< T > &  ,
const T   
)

◆ operator*() [2/2]

template<typename T >
Quat< T > cv::operator* ( const T  ,
const Quat< T > &   
)

◆ operator<<() [1/3]

template<typename _Tp >
std::ostream & cv::operator<< ( std::ostream &  ,
const DualQuat< _Tp > &   
)

◆ operator<<() [2/3]

template<typename _Tp >
std::ostream & cv::operator<< ( std::ostream &  ,
const Quat< _Tp > &   
)

◆ operator<<() [3/3]

template<typename S >
std::ostream & cv::operator<< ( std::ostream &  ,
const Quat< S > &   
)

◆ power() [1/2]

template<typename T >
Quat< T > cv::power ( const Quat< T > &  q,
const Quat< T > &  p,
QuatAssumeType  assumeUnit = QUAT_ASSUME_NOT_UNIT 
)

#include <opencv2/core/quaternion.hpp>

\[p^q = e^{q\ln(p)}.\]

Parameters
pbase quaternion of power function.
qindex quaternion of power function.
assumeUnitif QUAT_ASSUME_UNIT, quaternion \(p\) assume to be a unit quaternion and this function will save some computations.

For example

Quatd p(1,2,3,4);
Quatd q(5,6,7,8);
power(p, q);
p = p.normalize();
power(p, q, assumeUnit); //This assumeUnit means p is a unit quaternion
Quat< T > power(const Quat< T > &q, const Quat< T > &p, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT)

◆ power() [2/2]

template<typename T >
Quat< T > cv::power ( const Quat< T > &  q,
const T  x,
QuatAssumeType  assumeUnit = QUAT_ASSUME_NOT_UNIT 
)

#include <opencv2/core/quaternion.hpp>

\[q^x = ||q||(cos(x\theta) + \boldsymbol{u}sin(x\theta))).\]

Parameters
qa quaternion.
xindex of exponentiation.
assumeUnitif QUAT_ASSUME_UNIT, quaternion q assume to be a unit quaternion and this function will save some computations.

For example

Quatd q(1,2,3,4);
power(q, 2.0);
double angle = CV_PI;
Vec3d axis{0, 0, 1};
Quatd q1 = Quatd::createFromAngleAxis(angle, axis); //generate a unit quat by axis and angle
power(q1, 2.0, assumeUnit);//This assumeUnit means q1 is a unit quaternion.
static Quat< _Tp > createFromAngleAxis(const _Tp angle, const Vec< _Tp, 3 > &axis)
from an angle, axis. Axis will be normalized in this function. And it generates
#define CV_PI
Definition cvdef.h:382
Note
the type of the index should be the same as the quaternion.

◆ sin()

template<typename T >
Quat< T > cv::sin ( const Quat< T > &  q)

#include <opencv2/core/quaternion.hpp>

\[\sin(p) = \sin(w) * \cosh(||\boldsymbol{v}||) + \cos(w)\frac{\boldsymbol{v}}{||\boldsymbol{v}||}\sinh(||\boldsymbol{v}||)\]

where \(\boldsymbol{v} = [x, y, z].\)

Parameters
qa quaternion.

For example

Quatd q(1,2,3,4);
sin(q);
Quat< T > sin(const Quat< T > &q)

◆ sinh()

template<typename T >
Quat< T > cv::sinh ( const Quat< T > &  q)

#include <opencv2/core/quaternion.hpp>

\[\sinh(p) = \sin(w)\cos(||\boldsymbol{v}||) + \cosh(w)\frac{v}{||\boldsymbol{v}||}\sin||\boldsymbol{v}||\]

where \(\boldsymbol{v} = [x, y, z].\)

Parameters
qa quaternion.

For example

Quatd q(1,2,3,4);
sinh(q);
Quat< T > sinh(const Quat< T > &q)

◆ sqrt()

template<typename S >
Quat< S > cv::sqrt ( const Quat< S > &  q,
QuatAssumeType  assumeUnit = QUAT_ASSUME_NOT_UNIT 
)
Python:
cv.sqrt(src[, dst]) -> dst

#include <opencv2/core/quaternion.hpp>

Here is the call graph for this function:

◆ tan()

template<typename T >
Quat< T > cv::tan ( const Quat< T > &  q)

#include <opencv2/core/quaternion.hpp>

\[\tan(q) = \frac{\sin(q)}{\cos(q)}.\]

Parameters
qa quaternion.

For example

Quatd q(1,2,3,4);
tan(q);
Quat< T > tan(const Quat< T > &q)

◆ tanh()

template<typename T >
Quat< T > cv::tanh ( const Quat< T > &  q)

#include <opencv2/core/quaternion.hpp>

\[ \tanh(q) = \frac{\sinh(q)}{\cosh(q)}.\]

Parameters
qa quaternion.

For example

Quatd q(1,2,3,4);
tanh(q);
Quat< T > tanh(const Quat< T > &q)
See also
sinh, cosh