OpenCV 5.0.0-pre
Open Source Computer Vision
Loading...
Searching...
No Matches
cv::ximgproc::RidgeDetectionFilter Class Referenceabstract

Applies Ridge Detection Filter to an input image. Implements Ridge detection similar to the one in Mathematica using the eigen values from the Hessian Matrix of the input image using Sobel Derivatives. Additional refinement can be done using Skeletonization and Binarization. Adapted from [79] and [187]. More...

#include <opencv2/ximgproc/ridgefilter.hpp>

Collaboration diagram for cv::ximgproc::RidgeDetectionFilter:

Public Member Functions

virtual void getRidgeFilteredImage (InputArray _img, OutputArray out)=0
 Apply Ridge detection filter on input image.
 
- Public Member Functions inherited from cv::Algorithm
 Algorithm ()
 
virtual ~Algorithm ()
 
virtual void clear ()
 Clears the algorithm state.
 
virtual bool empty () const
 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read.
 
virtual String getDefaultName () const
 
virtual void read (const FileNode &fn)
 Reads algorithm parameters from a file storage.
 
virtual void save (const String &filename) const
 
virtual void write (FileStorage &fs) const
 Stores algorithm parameters in a file storage.
 
void write (FileStorage &fs, const String &name) const
 

Static Public Member Functions

static Ptr< RidgeDetectionFiltercreate (int ddepth=CV_32FC1, int dx=1, int dy=1, int ksize=3, int out_dtype=CV_8UC1, double scale=1, double delta=0, int borderType=BORDER_DEFAULT)
 Create pointer to the Ridge detection filter.
 
- Static Public Member Functions inherited from cv::Algorithm
template<typename _Tp >
static Ptr< _Tpload (const String &filename, const String &objname=String())
 Loads algorithm from the file.
 
template<typename _Tp >
static Ptr< _TploadFromString (const String &strModel, const String &objname=String())
 Loads algorithm from a String.
 
template<typename _Tp >
static Ptr< _Tpread (const FileNode &fn)
 Reads algorithm from the file node.
 

Additional Inherited Members

- Protected Member Functions inherited from cv::Algorithm
void writeFormat (FileStorage &fs) const
 

Detailed Description

Applies Ridge Detection Filter to an input image. Implements Ridge detection similar to the one in Mathematica using the eigen values from the Hessian Matrix of the input image using Sobel Derivatives. Additional refinement can be done using Skeletonization and Binarization. Adapted from [79] and [187].

Member Function Documentation

◆ create()

static Ptr< RidgeDetectionFilter > cv::ximgproc::RidgeDetectionFilter::create ( int ddepth = CV_32FC1,
int dx = 1,
int dy = 1,
int ksize = 3,
int out_dtype = CV_8UC1,
double scale = 1,
double delta = 0,
int borderType = BORDER_DEFAULT )
static
Python:
cv.ximgproc.RidgeDetectionFilter.create([, ddepth[, dx[, dy[, ksize[, out_dtype[, scale[, delta[, borderType]]]]]]]]) -> retval
cv.ximgproc.RidgeDetectionFilter_create([, ddepth[, dx[, dy[, ksize[, out_dtype[, scale[, delta[, borderType]]]]]]]]) -> retval

Create pointer to the Ridge detection filter.

Parameters
ddepthSpecifies output image depth. Defualt is CV_32FC1
dxOrder of derivative x, default is 1
dyOrder of derivative y, default is 1
ksizeSobel kernel size , default is 3
out_dtypeConverted format for output, default is CV_8UC1
scaleOptional scale value for derivative values, default is 1
deltaOptional bias added to output, default is 0
borderTypePixel extrapolation method, default is BORDER_DEFAULT
See also
Sobel, threshold, getStructuringElement, morphologyEx.( for additional refinement)

◆ getRidgeFilteredImage()

virtual void cv::ximgproc::RidgeDetectionFilter::getRidgeFilteredImage ( InputArray _img,
OutputArray out )
pure virtual
Python:
cv.ximgproc.RidgeDetectionFilter.getRidgeFilteredImage(_img[, out]) -> out

Apply Ridge detection filter on input image.

Parameters
_imgInputArray as supported by Sobel. img can be 1-Channel or 3-Channels.
outOutputAray of structure as RidgeDetectionFilter::ddepth. Output image with ridges.

The documentation for this class was generated from the following file: