|
| DetectionModel () |
|
| DetectionModel (const Net &network) |
| Create model from deep learning network.
|
|
| DetectionModel (CV_WRAP_FILE_PATH const String &model, CV_WRAP_FILE_PATH const String &config="") |
| Create detection model from network represented in one of the supported formats. An order of model and config arguments does not matter.
|
|
void | detect (InputArray frame, std::vector< int > &classIds, std::vector< float > &confidences, std::vector< Rect > &boxes, float confThreshold=0.5f, float nmsThreshold=0.0f) |
| Given the input frame, create input blob, run net and return result detections.
|
|
bool | getNmsAcrossClasses () |
| Getter for nmsAcrossClasses. This variable defaults to false, such that when non max suppression is used during the detect() function, it will do so only per-class.
|
|
DetectionModel & | setNmsAcrossClasses (bool value) |
| nmsAcrossClasses defaults to false, such that when non max suppression is used during the detect() function, it will do so per-class. This function allows you to toggle this behaviour.
|
|
| Model () |
|
| Model (const Model &)=default |
|
| Model (const Net &network) |
| Create model from deep learning network.
|
|
| Model (CV_WRAP_FILE_PATH const String &model, CV_WRAP_FILE_PATH const String &config="") |
| Create model from deep learning network represented in one of the supported formats. An order of model and config arguments does not matter.
|
|
| Model (Model &&)=default |
|
Model & | enableWinograd (bool useWinograd) |
|
Impl * | getImpl () const |
|
Impl & | getImplRef () const |
|
Net & | getNetwork_ () |
|
Net & | getNetwork_ () const |
|
| operator Net & () const |
|
Model & | operator= (const Model &)=default |
|
Model & | operator= (Model &&)=default |
|
void | predict (InputArray frame, OutputArrayOfArrays outs) const |
| Given the input frame, create input blob, run net and return the output blobs .
|
|
Model & | setInputCrop (bool crop) |
| Set flag crop for frame.
|
|
Model & | setInputMean (const Scalar &mean) |
| Set mean value for frame.
|
|
void | setInputParams (double scale=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false) |
| Set preprocessing parameters for frame.
|
|
Model & | setInputScale (const Scalar &scale) |
| Set scalefactor value for frame.
|
|
Model & | setInputSize (const Size &size) |
| Set input size for frame.
|
|
Model & | setInputSize (int width, int height) |
|
Model & | setInputSwapRB (bool swapRB) |
| Set flag swapRB for frame.
|
|
Model & | setOutputNames (const std::vector< String > &outNames) |
| Set output names for frame.
|
|
Model & | setPreferableBackend (dnn::Backend backendId) |
|
Model & | setPreferableTarget (dnn::Target targetId) |
|
This class represents high-level API for object detection networks.
DetectionModel allows to set params for preprocessing input image. DetectionModel creates net from file with trained weights and config, sets preprocessing input, runs forward pass and return result detections. For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported.