OpenCV  5.0.0alpha
Open Source Computer Vision
Loading...
Searching...
No Matches
cv::SVD Class Reference

Singular Value Decomposition. More...

#include <opencv2/core.hpp>

Collaboration diagram for cv::SVD:

Public Types

enum  Flags {
  MODIFY_A = 1 ,
  NO_UV = 2 ,
  FULL_UV = 4
}
 

Public Member Functions

 SVD ()
 the default constructor
 
 SVD (InputArray src, int flags=0)
 
void backSubst (InputArray rhs, OutputArray dst) const
 performs a singular value back substitution.
 
SVDoperator() (InputArray src, int flags=0)
 the operator that performs SVD. The previously allocated u, w and vt are released.
 

Static Public Member Functions

template<typename _Tp , int m, int n, int nm, int nb>
static void backSubst (const Matx< _Tp, nm, 1 > &w, const Matx< _Tp, m, nm > &u, const Matx< _Tp, n, nm > &vt, const Matx< _Tp, m, nb > &rhs, Matx< _Tp, n, nb > &dst)
 
static void backSubst (InputArray w, InputArray u, InputArray vt, InputArray rhs, OutputArray dst)
 performs back substitution
 
template<typename _Tp , int m, int n, int nm>
static void compute (const Matx< _Tp, m, n > &a, Matx< _Tp, nm, 1 > &w)
 
template<typename _Tp , int m, int n, int nm>
static void compute (const Matx< _Tp, m, n > &a, Matx< _Tp, nm, 1 > &w, Matx< _Tp, m, nm > &u, Matx< _Tp, n, nm > &vt)
 
static void compute (InputArray src, OutputArray w, int flags=0)
 
static void compute (InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags=0)
 decomposes matrix and stores the results to user-provided matrices
 
static void solveZ (InputArray src, OutputArray dst)
 solves an under-determined singular linear system
 

Public Attributes

Mat u
 
Mat vt
 
Mat w
 

Detailed Description

Singular Value Decomposition.

Class for computing Singular Value Decomposition of a floating-point matrix. The Singular Value Decomposition is used to solve least-square problems, under-determined linear systems, invert matrices, compute condition numbers, and so on.

If you want to compute a condition number of a matrix or an absolute value of its determinant, you do not need u and vt. You can pass flags=SVD::NO_UV|... . Another flag SVD::FULL_UV indicates that full-size u and vt must be computed, which is not necessary most of the time.

See also
invert, solve, eigen, determinant

Member Enumeration Documentation

◆ Flags

Enumerator
MODIFY_A 

allow the algorithm to modify the decomposed matrix; it can save space and speed up processing. currently ignored.

NO_UV 

indicates that only a vector of singular values w is to be processed, while u and vt will be set to empty matrices

FULL_UV 

when the matrix is not square, by default the algorithm produces u and vt matrices of sufficiently large size for the further A reconstruction; if, however, FULL_UV flag is specified, u and vt will be full-size square orthogonal matrices.

Constructor & Destructor Documentation

◆ SVD() [1/2]

cv::SVD::SVD ( )

the default constructor

initializes an empty SVD structure

◆ SVD() [2/2]

cv::SVD::SVD ( InputArray src,
int flags = 0 )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. initializes an empty SVD structure and then calls SVD::operator()

Parameters
srcdecomposed matrix. The depth has to be CV_32F or CV_64F.
flagsoperation flags (SVD::Flags)

Member Function Documentation

◆ backSubst() [1/3]

template<typename _Tp , int m, int n, int nm, int nb>
static void cv::SVD::backSubst ( const Matx< _Tp, nm, 1 > & w,
const Matx< _Tp, m, nm > & u,
const Matx< _Tp, n, nm > & vt,
const Matx< _Tp, m, nb > & rhs,
Matx< _Tp, n, nb > & dst )
static
Todo
document

◆ backSubst() [2/3]

void cv::SVD::backSubst ( InputArray rhs,
OutputArray dst ) const

performs a singular value back substitution.

The method calculates a back substitution for the specified right-hand side:

\[\texttt{x} = \texttt{vt} ^T \cdot diag( \texttt{w} )^{-1} \cdot \texttt{u} ^T \cdot \texttt{rhs} \sim \texttt{A} ^{-1} \cdot \texttt{rhs}\]

Using this technique you can either get a very accurate solution of the convenient linear system, or the best (in the least-squares terms) pseudo-solution of an overdetermined linear system.

Parameters
rhsright-hand side of a linear system (u*w*v')*dst = rhs to be solved, where A has been previously decomposed.
dstfound solution of the system.
Note
Explicit SVD with the further back substitution only makes sense if you need to solve many linear systems with the same left-hand side (for example, src ). If all you need is to solve a single system (possibly with multiple rhs immediately available), simply call solve add pass DECOMP_SVD there. It does absolutely the same thing.

◆ backSubst() [3/3]

static void cv::SVD::backSubst ( InputArray w,
InputArray u,
InputArray vt,
InputArray rhs,
OutputArray dst )
static

performs back substitution

◆ compute() [1/4]

template<typename _Tp , int m, int n, int nm>
static void cv::SVD::compute ( const Matx< _Tp, m, n > & a,
Matx< _Tp, nm, 1 > & w )
static
Todo
document

◆ compute() [2/4]

template<typename _Tp , int m, int n, int nm>
static void cv::SVD::compute ( const Matx< _Tp, m, n > & a,
Matx< _Tp, nm, 1 > & w,
Matx< _Tp, m, nm > & u,
Matx< _Tp, n, nm > & vt )
static
Todo
document

◆ compute() [3/4]

static void cv::SVD::compute ( InputArray src,
OutputArray w,
int flags = 0 )
static

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts. computes singular values of a matrix

Parameters
srcdecomposed matrix. The depth has to be CV_32F or CV_64F.
wcalculated singular values
flagsoperation flags - see SVD::Flags.

◆ compute() [4/4]

static void cv::SVD::compute ( InputArray src,
OutputArray w,
OutputArray u,
OutputArray vt,
int flags = 0 )
static

decomposes matrix and stores the results to user-provided matrices

The methods/functions perform SVD of matrix. Unlike SVD::SVD constructor and SVD::operator(), they store the results to the user-provided matrices:

Mat A, w, u, vt;
n-dimensional dense array class
Definition mat.hpp:951
Mat w
Definition core.hpp:2789
static void compute(InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags=0)
decomposes matrix and stores the results to user-provided matrices
Mat vt
Definition core.hpp:2789
Mat u
Definition core.hpp:2789
Parameters
srcdecomposed matrix. The depth has to be CV_32F or CV_64F.
wcalculated singular values
ucalculated left singular vectors
vttransposed matrix of right singular vectors
flagsoperation flags - see SVD::Flags.

◆ operator()()

SVD & cv::SVD::operator() ( InputArray src,
int flags = 0 )

the operator that performs SVD. The previously allocated u, w and vt are released.

The operator performs the singular value decomposition of the supplied matrix. The u,vt , and the vector of singular values w are stored in the structure. The same SVD structure can be reused many times with different matrices. Each time, if needed, the previous u,vt , and w are reclaimed and the new matrices are created, which is all handled by Mat::create.

Parameters
srcdecomposed matrix. The depth has to be CV_32F or CV_64F.
flagsoperation flags (SVD::Flags)

◆ solveZ()

static void cv::SVD::solveZ ( InputArray src,
OutputArray dst )
static

solves an under-determined singular linear system

The method finds a unit-length solution x of a singular linear system A*x = 0. Depending on the rank of A, there can be no solutions, a single solution or an infinite number of solutions. In general, the algorithm solves the following problem:

\[dst = \arg \min _{x: \| x \| =1} \| src \cdot x \|\]

Parameters
srcleft-hand-side matrix.
dstfound solution.

Member Data Documentation

◆ u

Mat cv::SVD::u

◆ vt

Mat cv::SVD::vt

◆ w

Mat cv::SVD::w

The documentation for this class was generated from the following file: