#include <opencv2/face/face_alignment.hpp>
|
virtual | ~FacemarkKazemi () |
|
virtual bool | getFaces (InputArray image, OutputArray faces)=0 |
| get faces using the custom detector
|
|
virtual bool | setFaceDetector (bool(*f)(InputArray, OutputArray, void *), void *userData)=0 |
| set the custom face detector
|
|
virtual bool | training (std::vector< Mat > &images, std::vector< std::vector< Point2f > > &landmarks, std::string configfile, Size scale, std::string modelFilename="face_landmarks.dat")=0 |
| This function is used to train the model using gradient boosting to get a cascade of regressors which can then be used to predict shape.
|
|
virtual bool | fit (InputArray image, InputArray faces, OutputArrayOfArrays landmarks)=0 |
| Detect facial landmarks from an image.
|
|
virtual void | loadModel (String model)=0 |
| A function to load the trained model before the fitting process.
|
|
| Algorithm () |
|
virtual | ~Algorithm () |
|
virtual void | clear () |
| Clears the algorithm state.
|
|
virtual bool | empty () const |
| Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read.
|
|
virtual String | getDefaultName () const |
|
virtual void | read (const FileNode &fn) |
| Reads algorithm parameters from a file storage.
|
|
virtual void | save (const String &filename) const |
|
virtual void | write (FileStorage &fs) const |
| Stores algorithm parameters in a file storage.
|
|
void | write (FileStorage &fs, const String &name) const |
|
◆ ~FacemarkKazemi()
virtual cv::face::FacemarkKazemi::~FacemarkKazemi |
( |
| ) |
|
|
virtual |
◆ create()
◆ getFaces()
get faces using the custom detector
◆ setFaceDetector()
virtual bool cv::face::FacemarkKazemi::setFaceDetector |
( |
bool(* | f )(InputArray, OutputArray, void *), |
|
|
void * | userData ) |
|
pure virtual |
set the custom face detector
◆ training()
virtual bool cv::face::FacemarkKazemi::training |
( |
std::vector< Mat > & | images, |
|
|
std::vector< std::vector< Point2f > > & | landmarks, |
|
|
std::string | configfile, |
|
|
Size | scale, |
|
|
std::string | modelFilename = "face_landmarks.dat" ) |
|
pure virtual |
This function is used to train the model using gradient boosting to get a cascade of regressors which can then be used to predict shape.
- Parameters
-
images | A vector of type cv::Mat which stores the images which are used in training samples. |
landmarks | A vector of vectors of type cv::Point2f which stores the landmarks detected in a particular image. |
scale | A size of type cv::Size to which all images and landmarks have to be scaled to. |
configfile | A variable of type std::string which stores the name of the file storing parameters for training the model. |
modelFilename | A variable of type std::string which stores the name of the trained model file that has to be saved. |
- Returns
- A boolean value. The function returns true if the model is trained properly or false if it is not trained.
The documentation for this class was generated from the following file: