K-nearest neighbours - based Background/Foreground Segmentation Algorithm.
More...
#include <opencv2/video/background_segm.hpp>
|
virtual bool | getDetectShadows () const =0 |
| Returns the shadow detection flag.
|
|
virtual double | getDist2Threshold () const =0 |
| Returns the threshold on the squared distance between the pixel and the sample.
|
|
virtual int | getHistory () const =0 |
| Returns the number of last frames that affect the background model.
|
|
virtual int | getkNNSamples () const =0 |
| Returns the number of neighbours, the k in the kNN.
|
|
virtual int | getNSamples () const =0 |
| Returns the number of data samples in the background model.
|
|
virtual double | getShadowThreshold () const =0 |
| Returns the shadow threshold.
|
|
virtual int | getShadowValue () const =0 |
| Returns the shadow value.
|
|
virtual void | setDetectShadows (bool detectShadows)=0 |
| Enables or disables shadow detection.
|
|
virtual void | setDist2Threshold (double _dist2Threshold)=0 |
| Sets the threshold on the squared distance.
|
|
virtual void | setHistory (int history)=0 |
| Sets the number of last frames that affect the background model.
|
|
virtual void | setkNNSamples (int _nkNN)=0 |
| Sets the k in the kNN. How many nearest neighbours need to match.
|
|
virtual void | setNSamples (int _nN)=0 |
| Sets the number of data samples in the background model.
|
|
virtual void | setShadowThreshold (double threshold)=0 |
| Sets the shadow threshold.
|
|
virtual void | setShadowValue (int value)=0 |
| Sets the shadow value.
|
|
virtual void | apply (InputArray image, OutputArray fgmask, double learningRate=-1)=0 |
| Computes a foreground mask.
|
|
virtual void | getBackgroundImage (OutputArray backgroundImage) const =0 |
| Computes a background image.
|
|
| Algorithm () |
|
virtual | ~Algorithm () |
|
virtual void | clear () |
| Clears the algorithm state.
|
|
virtual bool | empty () const |
| Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read.
|
|
virtual String | getDefaultName () const |
|
virtual void | read (const FileNode &fn) |
| Reads algorithm parameters from a file storage.
|
|
virtual void | save (const String &filename) const |
|
virtual void | write (FileStorage &fs) const |
| Stores algorithm parameters in a file storage.
|
|
void | write (FileStorage &fs, const String &name) const |
|
K-nearest neighbours - based Background/Foreground Segmentation Algorithm.
The class implements the K-nearest neighbours background subtraction described in [325] . Very efficient if number of foreground pixels is low.
◆ getDetectShadows()
virtual bool cv::BackgroundSubtractorKNN::getDetectShadows |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.getDetectShadows( | | ) -> | retval |
Returns the shadow detection flag.
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for details.
◆ getDist2Threshold()
virtual double cv::BackgroundSubtractorKNN::getDist2Threshold |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.getDist2Threshold( | | ) -> | retval |
Returns the threshold on the squared distance between the pixel and the sample.
The threshold on the squared distance between the pixel and the sample to decide whether a pixel is close to a data sample.
◆ getHistory()
virtual int cv::BackgroundSubtractorKNN::getHistory |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.getHistory( | | ) -> | retval |
Returns the number of last frames that affect the background model.
◆ getkNNSamples()
virtual int cv::BackgroundSubtractorKNN::getkNNSamples |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.getkNNSamples( | | ) -> | retval |
Returns the number of neighbours, the k in the kNN.
K is the number of samples that need to be within dist2Threshold in order to decide that that pixel is matching the kNN background model.
◆ getNSamples()
virtual int cv::BackgroundSubtractorKNN::getNSamples |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.getNSamples( | | ) -> | retval |
Returns the number of data samples in the background model.
◆ getShadowThreshold()
virtual double cv::BackgroundSubtractorKNN::getShadowThreshold |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.getShadowThreshold( | | ) -> | retval |
Returns the shadow threshold.
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara, Detecting Moving Shadows...*, IEEE PAMI,2003.
◆ getShadowValue()
virtual int cv::BackgroundSubtractorKNN::getShadowValue |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.getShadowValue( | | ) -> | retval |
Returns the shadow value.
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 in the mask always means background, 255 means foreground.
◆ setDetectShadows()
virtual void cv::BackgroundSubtractorKNN::setDetectShadows |
( |
bool | detectShadows | ) |
|
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.setDetectShadows( | detectShadows | ) -> | None |
Enables or disables shadow detection.
◆ setDist2Threshold()
virtual void cv::BackgroundSubtractorKNN::setDist2Threshold |
( |
double | _dist2Threshold | ) |
|
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.setDist2Threshold( | _dist2Threshold | ) -> | None |
Sets the threshold on the squared distance.
◆ setHistory()
virtual void cv::BackgroundSubtractorKNN::setHistory |
( |
int | history | ) |
|
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.setHistory( | history | ) -> | None |
Sets the number of last frames that affect the background model.
◆ setkNNSamples()
virtual void cv::BackgroundSubtractorKNN::setkNNSamples |
( |
int | _nkNN | ) |
|
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.setkNNSamples( | _nkNN | ) -> | None |
Sets the k in the kNN. How many nearest neighbours need to match.
◆ setNSamples()
virtual void cv::BackgroundSubtractorKNN::setNSamples |
( |
int | _nN | ) |
|
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.setNSamples( | _nN | ) -> | None |
Sets the number of data samples in the background model.
The model needs to be reinitalized to reserve memory.
◆ setShadowThreshold()
virtual void cv::BackgroundSubtractorKNN::setShadowThreshold |
( |
double | threshold | ) |
|
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.setShadowThreshold( | threshold | ) -> | None |
Sets the shadow threshold.
◆ setShadowValue()
virtual void cv::BackgroundSubtractorKNN::setShadowValue |
( |
int | value | ) |
|
|
pure virtual |
Python: |
---|
| cv.BackgroundSubtractorKNN.setShadowValue( | value | ) -> | None |
The documentation for this class was generated from the following file: