OpenCV  5.0.0alpha
Open Source Computer Vision
Loading...
Searching...
No Matches
cv::dnn_superres::DnnSuperResImpl Class Reference

A class to upscale images via convolutional neural networks. The following four models are implemented: More...

#include <opencv2/dnn_superres.hpp>

Collaboration diagram for cv::dnn_superres::DnnSuperResImpl:

Public Member Functions

 DnnSuperResImpl ()
 Empty constructor.
 
 DnnSuperResImpl (const String &algo, int scale)
 Constructor which immediately sets the desired model.
 
String getAlgorithm ()
 Returns the scale factor of the model:
 
int getScale ()
 Returns the scale factor of the model:
 
void readModel (const String &path)
 Read the model from the given path.
 
void readModel (const String &weights, const String &definition)
 Read the model from the given path.
 
void setModel (const String &algo, int scale)
 Set desired model.
 
void setPreferableBackend (int backendId)
 Set computation backend.
 
void setPreferableTarget (int targetId)
 Set computation target.
 
void upsample (InputArray img, OutputArray result)
 Upsample via neural network.
 
void upsampleMultioutput (InputArray img, std::vector< Mat > &imgs_new, const std::vector< int > &scale_factors, const std::vector< String > &node_names)
 Upsample via neural network of multiple outputs.
 

Static Public Member Functions

static Ptr< DnnSuperResImplcreate ()
 Empty constructor for python.
 

Detailed Description

A class to upscale images via convolutional neural networks. The following four models are implemented:

  • edsr
  • espcn
  • fsrcnn
  • lapsrn

Constructor & Destructor Documentation

◆ DnnSuperResImpl() [1/2]

cv::dnn_superres::DnnSuperResImpl::DnnSuperResImpl ( )

Empty constructor.

◆ DnnSuperResImpl() [2/2]

cv::dnn_superres::DnnSuperResImpl::DnnSuperResImpl ( const String & algo,
int scale )

Constructor which immediately sets the desired model.

Parameters
algoString containing one of the desired models:
  • edsr
  • espcn
  • fsrcnn
  • lapsrn
scaleInteger specifying the upscale factor

Member Function Documentation

◆ create()

static Ptr< DnnSuperResImpl > cv::dnn_superres::DnnSuperResImpl::create ( )
static
Python:
cv.dnn_superres.DnnSuperResImpl.create() -> retval
cv.dnn_superres.DnnSuperResImpl_create() -> retval

Empty constructor for python.

◆ getAlgorithm()

String cv::dnn_superres::DnnSuperResImpl::getAlgorithm ( )
Python:
cv.dnn_superres.DnnSuperResImpl.getAlgorithm() -> retval

Returns the scale factor of the model:

Returns
Current algorithm.

◆ getScale()

int cv::dnn_superres::DnnSuperResImpl::getScale ( )
Python:
cv.dnn_superres.DnnSuperResImpl.getScale() -> retval

Returns the scale factor of the model:

Returns
Current scale factor.

◆ readModel() [1/2]

void cv::dnn_superres::DnnSuperResImpl::readModel ( const String & path)
Python:
cv.dnn_superres.DnnSuperResImpl.readModel(path) -> None

Read the model from the given path.

Parameters
pathPath to the model file.

◆ readModel() [2/2]

void cv::dnn_superres::DnnSuperResImpl::readModel ( const String & weights,
const String & definition )
Python:
cv.dnn_superres.DnnSuperResImpl.readModel(path) -> None

Read the model from the given path.

Parameters
weightsPath to the model weights file.
definitionPath to the model definition file.

◆ setModel()

void cv::dnn_superres::DnnSuperResImpl::setModel ( const String & algo,
int scale )
Python:
cv.dnn_superres.DnnSuperResImpl.setModel(algo, scale) -> None

Set desired model.

Parameters
algoString containing one of the desired models:
  • edsr
  • espcn
  • fsrcnn
  • lapsrn
scaleInteger specifying the upscale factor

◆ setPreferableBackend()

void cv::dnn_superres::DnnSuperResImpl::setPreferableBackend ( int backendId)
Python:
cv.dnn_superres.DnnSuperResImpl.setPreferableBackend(backendId) -> None

Set computation backend.

◆ setPreferableTarget()

void cv::dnn_superres::DnnSuperResImpl::setPreferableTarget ( int targetId)
Python:
cv.dnn_superres.DnnSuperResImpl.setPreferableTarget(targetId) -> None

Set computation target.

◆ upsample()

void cv::dnn_superres::DnnSuperResImpl::upsample ( InputArray img,
OutputArray result )
Python:
cv.dnn_superres.DnnSuperResImpl.upsample(img[, result]) -> result

Upsample via neural network.

Parameters
imgImage to upscale
resultDestination upscaled image

◆ upsampleMultioutput()

void cv::dnn_superres::DnnSuperResImpl::upsampleMultioutput ( InputArray img,
std::vector< Mat > & imgs_new,
const std::vector< int > & scale_factors,
const std::vector< String > & node_names )
Python:
cv.dnn_superres.DnnSuperResImpl.upsampleMultioutput(img, imgs_new, scale_factors, node_names) -> None

Upsample via neural network of multiple outputs.

Parameters
imgImage to upscale
imgs_newDestination upscaled images
scale_factorsScaling factors of the output nodes
node_namesNames of the output nodes in the neural network

The documentation for this class was generated from the following file: