Class implementing VGG (Oxford Visual Geometry Group) descriptor trained end to end using "Descriptor Learning Using Convex Optimisation" (DLCO) aparatus described in [247].
More...
#include <opencv2/xfeatures2d.hpp>
|
String | getDefaultName () const CV_OVERRIDE |
|
virtual float | getScaleFactor () const =0 |
|
virtual float | getSigma () const =0 |
|
virtual bool | getUseNormalizeDescriptor () const =0 |
|
virtual bool | getUseNormalizeImage () const =0 |
|
virtual bool | getUseScaleOrientation () const =0 |
|
virtual void | setScaleFactor (const float scale_factor)=0 |
|
virtual void | setSigma (const float isigma)=0 |
|
virtual void | setUseNormalizeDescriptor (const bool dsc_normalize)=0 |
|
virtual void | setUseNormalizeImage (const bool img_normalize)=0 |
|
virtual void | setUseScaleOrientation (const bool use_scale_orientation)=0 |
|
virtual | ~Feature2D () |
|
virtual void | compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors) |
| Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).
|
|
virtual void | compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) |
|
virtual int | defaultNorm () const |
|
virtual int | descriptorSize () const |
|
virtual int | descriptorType () const |
|
virtual void | detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray()) |
| Detects keypoints in an image (first variant) or image set (second variant).
|
|
virtual void | detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray()) |
|
virtual void | detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false) |
|
virtual bool | empty () const CV_OVERRIDE |
| Return true if detector object is empty.
|
|
virtual void | read (const FileNode &) CV_OVERRIDE |
| Reads algorithm parameters from a file storage.
|
|
void | read (const String &fileName) |
|
void | write (const String &fileName) const |
|
virtual void | write (FileStorage &) const CV_OVERRIDE |
| Stores algorithm parameters in a file storage.
|
|
void | write (FileStorage &fs, const String &name) const |
|
| Algorithm () |
|
virtual | ~Algorithm () |
|
virtual void | clear () |
| Clears the algorithm state.
|
|
virtual void | save (const String &filename) const |
|
void | write (FileStorage &fs, const String &name) const |
|
Class implementing VGG (Oxford Visual Geometry Group) descriptor trained end to end using "Descriptor Learning Using Convex Optimisation" (DLCO) aparatus described in [247].
- Parameters
-
desc | type of descriptor to use, VGG::VGG_120 is default (120 dimensions float) Available types are VGG::VGG_120, VGG::VGG_80, VGG::VGG_64, VGG::VGG_48 |
isigma | gaussian kernel value for image blur (default is 1.4f) |
img_normalize | use image sample intensity normalization (enabled by default) |
use_orientation | sample patterns using keypoints orientation, enabled by default |
scale_factor | adjust the sampling window of detected keypoints to 64.0f (VGG sampling window) 6.25f is default and fits for KAZE, SURF detected keypoints window ratio 6.75f should be the scale for SIFT detected keypoints window ratio 5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints window ratio 0.75f should be the scale for ORB keypoints ratio |
dsc_normalize | clamp descriptors to 255 and convert to uchar CV_8UC1 (disabled by default) |
◆ anonymous enum
Enumerator |
---|
VGG_120 | |
VGG_80 | |
VGG_64 | |
VGG_48 | |
◆ create()
static Ptr< VGG > cv::xfeatures2d::VGG::create |
( |
int | desc = VGG::VGG_120, |
|
|
float | isigma = 1.4f, |
|
|
bool | img_normalize = true, |
|
|
bool | use_scale_orientation = true, |
|
|
float | scale_factor = 6.25f, |
|
|
bool | dsc_normalize = false ) |
|
static |
Python: |
---|
| cv.xfeatures2d.VGG.create( | [, desc[, isigma[, img_normalize[, use_scale_orientation[, scale_factor[, dsc_normalize]]]]]] | ) -> | retval |
| cv.xfeatures2d.VGG_create( | [, desc[, isigma[, img_normalize[, use_scale_orientation[, scale_factor[, dsc_normalize]]]]]] | ) -> | retval |
◆ getDefaultName()
String cv::xfeatures2d::VGG::getDefaultName |
( |
| ) |
const |
|
virtual |
Python: |
---|
| cv.xfeatures2d.VGG.getDefaultName( | | ) -> | retval |
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Reimplemented from cv::Feature2D.
◆ getScaleFactor()
virtual float cv::xfeatures2d::VGG::getScaleFactor |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.VGG.getScaleFactor( | | ) -> | retval |
◆ getSigma()
virtual float cv::xfeatures2d::VGG::getSigma |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.VGG.getSigma( | | ) -> | retval |
◆ getUseNormalizeDescriptor()
virtual bool cv::xfeatures2d::VGG::getUseNormalizeDescriptor |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.VGG.getUseNormalizeDescriptor( | | ) -> | retval |
◆ getUseNormalizeImage()
virtual bool cv::xfeatures2d::VGG::getUseNormalizeImage |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.VGG.getUseNormalizeImage( | | ) -> | retval |
◆ getUseScaleOrientation()
virtual bool cv::xfeatures2d::VGG::getUseScaleOrientation |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.VGG.getUseScaleOrientation( | | ) -> | retval |
◆ setScaleFactor()
virtual void cv::xfeatures2d::VGG::setScaleFactor |
( |
const float | scale_factor | ) |
|
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.VGG.setScaleFactor( | scale_factor | ) -> | None |
◆ setSigma()
virtual void cv::xfeatures2d::VGG::setSigma |
( |
const float | isigma | ) |
|
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.VGG.setSigma( | isigma | ) -> | None |
◆ setUseNormalizeDescriptor()
virtual void cv::xfeatures2d::VGG::setUseNormalizeDescriptor |
( |
const bool | dsc_normalize | ) |
|
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.VGG.setUseNormalizeDescriptor( | dsc_normalize | ) -> | None |
◆ setUseNormalizeImage()
virtual void cv::xfeatures2d::VGG::setUseNormalizeImage |
( |
const bool | img_normalize | ) |
|
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.VGG.setUseNormalizeImage( | img_normalize | ) -> | None |
◆ setUseScaleOrientation()
virtual void cv::xfeatures2d::VGG::setUseScaleOrientation |
( |
const bool | use_scale_orientation | ) |
|
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.VGG.setUseScaleOrientation( | use_scale_orientation | ) -> | None |
The documentation for this class was generated from the following file: