An example using PCA for dimensionality reduction while maintaining an amount of variance
 
#include <iostream>
#include <fstream>
#include <sstream>
 
 
 
static void read_imgList(const string& filename, vector<Mat>& images) {
    std::ifstream file(filename.c_str(), ifstream::in);
    if (!file) {
        string error_message = "No valid input file was given, please check the given filename.";
        CV_Error(Error::StsBadArg, error_message);
 
    }
    string line;
    while (getline(file, line)) {
        images.push_back(imread(line, IMREAD_GRAYSCALE));
    }
}
 
static  Mat formatImagesForPCA(
const vector<Mat> &data)
 
{
    Mat dst(
static_cast<int>(data.size()), data[0].rows*data[0].cols, 
CV_32F);
 
    for(unsigned int i = 0; i < data.size(); i++)
    {
        Mat image_row = data[i].clone().reshape(1,1);
 
    }
    return dst;
}
 
    
        CV_Error(Error::StsBadArg, 
"Only Matrices with one channel are supported");
 
    }
    
    return dst;
}
 
{
    int ch;
    int rows;
    string winName;
};
 
static void onTrackbar(int pos, void* ptr)
{
    cout << "Retained Variance = " << pos << "%   ";
    cout << "re-calculating PCA..." << std::flush;
 
    double var = pos / 100.0;
 
 
    p->pca = 
PCA(p->data, 
cv::Mat(), PCA::DATA_AS_ROW, var);
 
    Mat point = p->pca.project(p->data.row(0));
 
    Mat reconstruction = p->pca.backProject(point);
 
    reconstruction = reconstruction.
reshape(p->ch, p->rows);
    reconstruction = toGrayscale(reconstruction);
 
    imshow(p->winName, reconstruction);
 
    cout << "done!   # of principal components: " << p->pca.eigenvectors.rows << endl;
}
 
 
int main(
int argc, 
char** argv)
 
{
    if (parser.has("help"))
    {
        parser.printMessage();
        exit(0);
    }
    
    string imgList = parser.get<string>("@input");
    if (imgList.empty())
    {
        parser.printMessage();
        exit(1);
    }
 
    
    vector<Mat> images;
 
    
    try {
        read_imgList(imgList, images);
        cerr << 
"Error opening file \"" << imgList << 
"\". Reason: " << e.
msg << endl;
        exit(1);
    }
 
    
    if(images.size() <= 1) {
        string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
        CV_Error(Error::StsError, error_message);
 
    }
 
    
    Mat data = formatImagesForPCA(images);
 
 
    
 
    
    Mat point = pca.project(data.
row(0)); 
 
    Mat reconstruction = pca.backProject(point); 
 
    reconstruction = reconstruction.
reshape(images[0].channels(), images[0].rows); 
    reconstruction = toGrayscale(reconstruction); 
 
    
    string winName = "Reconstruction | press 'q' to quit";
 
    
    p.data = data;
    p.ch = images[0].channels();
    p.rows = images[0].rows;
    p.pca = pca;
    p.winName = winName;
 
    
    int pos = 95;
    createTrackbar(
"Retained Variance (%)", winName, &pos, 100, onTrackbar, (
void*)&p);
 
 
    
    imshow(winName, reconstruction);
 
 
    char key = 0;
    while(key != 'q')
 
   return 0;
}
Designed for command line parsing.
Definition utility.hpp:890
Class passed to an error.
Definition exception.hpp:86
std::string msg
the formatted error message
Definition exception.hpp:106
n-dimensional dense array class
Definition mat.hpp:951
Mat row(int y) const
Creates a matrix header for the specified matrix row.
Mat reshape(int cn, int rows=0) const
Changes the shape and/or the number of channels of a 2D matrix without copying the data.
int channels() const
Returns the number of matrix channels.
void convertTo(OutputArray m, int rtype, double alpha=1, double beta=0) const
Converts an array to another data type with optional scaling.
Principal Component Analysis.
Definition core.hpp:2429
void normalize(InputArray src, InputOutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray())
Normalizes the norm or value range of an array.
#define CV_32F
Definition interface.h:81
#define CV_8UC1
Definition interface.h:99
#define CV_Error(code, msg)
Call the error handler.
Definition exception.hpp:174
void imshow(const String &winname, InputArray mat)
Displays an image in the specified window.
int waitKey(int delay=0)
Waits for a pressed key.
void namedWindow(const String &winname, int flags=WINDOW_AUTOSIZE)
Creates a window.
int createTrackbar(const String &trackbarname, const String &winname, int *value, int count, TrackbarCallback onChange=0, void *userdata=0)
Creates a trackbar and attaches it to the specified window.
int main(int argc, char *argv[])
Definition highgui_qt.cpp:3
PyParams params(const std::string &tag, const std::string &model, const std::string &weights, const std::string &device)