OpenCV  5.0.0alpha
Open Source Computer Vision
Loading...
Searching...
No Matches
cv::gapi::ie Namespace Reference

This namespace contains G-API OpenVINO backend functions, structures, and symbols. More...

Namespaces

namespace  detail
 

Classes

class  Params
 This structure provides functions that fill inference parameters for "OpenVINO Toolkit" model. More...
 
class  Params< cv::gapi::Generic >
 
struct  PortCfg
 
class  PyParams
 

Typedefs

using IEConfig = std::map<std::string, std::string>
 

Enumerations

enum  InferMode {
  Sync ,
  Async
}
 
enum class  TraitAs : int {
  TENSOR ,
  IMAGE
}
 

Functions

cv::gapi::GBackend backend ()
 
PyParams params (const std::string &tag, const std::string &model, const std::string &device)
 
PyParams params (const std::string &tag, const std::string &model, const std::string &weights, const std::string &device)
 

Detailed Description

This namespace contains G-API OpenVINO backend functions, structures, and symbols.

Typedef Documentation

◆ IEConfig

using cv::gapi::ie::IEConfig = std::map<std::string, std::string>

Enumeration Type Documentation

◆ InferMode

Enumerator
Sync 
Python: cv.gapi.ie.Sync
Async 
Python: cv.gapi.ie.Async

◆ TraitAs

enum class cv::gapi::ie::TraitAs : int
strong

Specifies how G-API and IE should trait input data

In OpenCV, the same cv::Mat is used to represent both image and tensor data. Sometimes those are hardly distinguishable, so this extra parameter is used to give G-API a hint.

This hint controls how G-API reinterprets the data when converting it to IE Blob format (and which layout/etc is assigned to this data).

Enumerator
TENSOR 

G-API traits an associated cv::Mat as a raw tensor and passes dimensions as-is.

IMAGE 

G-API traits an associated cv::Mat as an image so creates an "image" blob (NCHW/NHWC, etc)

Function Documentation

◆ backend()

cv::gapi::GBackend cv::gapi::ie::backend ( )

◆ params() [1/2]

PyParams cv::gapi::ie::params ( const std::string & tag,
const std::string & model,
const std::string & device )
Python:
cv.gapi.ie.params(tag, model, weights, device) -> retval
cv.gapi.ie.params(tag, model, device) -> retval

◆ params() [2/2]

PyParams cv::gapi::ie::params ( const std::string & tag,
const std::string & model,
const std::string & weights,
const std::string & device )
Python:
cv.gapi.ie.params(tag, model, weights, device) -> retval
cv.gapi.ie.params(tag, model, device) -> retval