Class implementing the Harris-Laplace feature detector as described in [193].
More...
#include <opencv2/xfeatures2d.hpp>
|
virtual float | getCornThresh () const =0 |
|
String | getDefaultName () const CV_OVERRIDE |
|
virtual float | getDOGThresh () const =0 |
|
virtual int | getMaxCorners () const =0 |
|
virtual int | getNumLayers () const =0 |
|
virtual int | getNumOctaves () const =0 |
|
virtual void | setCornThresh (float corn_thresh_)=0 |
|
virtual void | setDOGThresh (float DOG_thresh_)=0 |
|
virtual void | setMaxCorners (int maxCorners_)=0 |
|
virtual void | setNumLayers (int num_layers_)=0 |
|
virtual void | setNumOctaves (int numOctaves_)=0 |
|
virtual | ~Feature2D () |
|
virtual void | compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors) |
| Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).
|
|
virtual void | compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) |
|
virtual int | defaultNorm () const |
|
virtual int | descriptorSize () const |
|
virtual int | descriptorType () const |
|
virtual void | detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray()) |
| Detects keypoints in an image (first variant) or image set (second variant).
|
|
virtual void | detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray()) |
|
virtual void | detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false) |
|
virtual bool | empty () const CV_OVERRIDE |
| Return true if detector object is empty.
|
|
virtual void | read (const FileNode &) CV_OVERRIDE |
| Reads algorithm parameters from a file storage.
|
|
void | read (const String &fileName) |
|
void | write (const String &fileName) const |
|
virtual void | write (FileStorage &) const CV_OVERRIDE |
| Stores algorithm parameters in a file storage.
|
|
void | write (FileStorage &fs, const String &name) const |
|
| Algorithm () |
|
virtual | ~Algorithm () |
|
virtual void | clear () |
| Clears the algorithm state.
|
|
virtual void | save (const String &filename) const |
|
void | write (FileStorage &fs, const String &name) const |
|
Class implementing the Harris-Laplace feature detector as described in [193].
◆ create()
static Ptr< HarrisLaplaceFeatureDetector > cv::xfeatures2d::HarrisLaplaceFeatureDetector::create |
( |
int | numOctaves = 6, |
|
|
float | corn_thresh = 0.01f, |
|
|
float | DOG_thresh = 0.01f, |
|
|
int | maxCorners = 5000, |
|
|
int | num_layers = 4 ) |
|
static |
Python: |
---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.create( | [, numOctaves[, corn_thresh[, DOG_thresh[, maxCorners[, num_layers]]]]] | ) -> | retval |
| cv.xfeatures2d.HarrisLaplaceFeatureDetector_create( | [, numOctaves[, corn_thresh[, DOG_thresh[, maxCorners[, num_layers]]]]] | ) -> | retval |
Creates a new implementation instance.
- Parameters
-
numOctaves | the number of octaves in the scale-space pyramid |
corn_thresh | the threshold for the Harris cornerness measure |
DOG_thresh | the threshold for the Difference-of-Gaussians scale selection |
maxCorners | the maximum number of corners to consider |
num_layers | the number of intermediate scales per octave |
◆ getCornThresh()
virtual float cv::xfeatures2d::HarrisLaplaceFeatureDetector::getCornThresh |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getCornThresh( | | ) -> | retval |
◆ getDefaultName()
String cv::xfeatures2d::HarrisLaplaceFeatureDetector::getDefaultName |
( |
| ) |
const |
|
virtual |
Python: |
---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getDefaultName( | | ) -> | retval |
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Reimplemented from cv::Feature2D.
◆ getDOGThresh()
virtual float cv::xfeatures2d::HarrisLaplaceFeatureDetector::getDOGThresh |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getDOGThresh( | | ) -> | retval |
◆ getMaxCorners()
virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getMaxCorners |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getMaxCorners( | | ) -> | retval |
◆ getNumLayers()
virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getNumLayers |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getNumLayers( | | ) -> | retval |
◆ getNumOctaves()
virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getNumOctaves |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getNumOctaves( | | ) -> | retval |
◆ setCornThresh()
virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setCornThresh |
( |
float | corn_thresh_ | ) |
|
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setCornThresh( | corn_thresh_ | ) -> | None |
◆ setDOGThresh()
virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setDOGThresh |
( |
float | DOG_thresh_ | ) |
|
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setDOGThresh( | DOG_thresh_ | ) -> | None |
◆ setMaxCorners()
virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setMaxCorners |
( |
int | maxCorners_ | ) |
|
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setMaxCorners( | maxCorners_ | ) -> | None |
◆ setNumLayers()
virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setNumLayers |
( |
int | num_layers_ | ) |
|
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setNumLayers( | num_layers_ | ) -> | None |
◆ setNumOctaves()
virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setNumOctaves |
( |
int | numOctaves_ | ) |
|
|
pure virtual |
Python: |
---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setNumOctaves( | numOctaves_ | ) -> | None |
The documentation for this class was generated from the following file: