|
virtual bool | getComputeOrientation () const =0 |
|
String | getDefaultName () const CV_OVERRIDE |
|
virtual int | getKNN () const =0 |
|
virtual int | getNmsRadius () const =0 |
|
virtual int | getNmsScaleRadius () const =0 |
|
virtual int | getNScales () const =0 |
|
virtual int | getPatchRadius () const =0 |
|
virtual float | getScaleFactor () const =0 |
|
virtual int | getSearchAreaRadius () const =0 |
|
virtual float | getThSaliency () const =0 |
|
virtual void | setComputeOrientation (bool compute_orientation)=0 |
|
virtual void | setKNN (int kNN)=0 |
|
virtual void | setNmsRadius (int nms_radius)=0 |
|
virtual void | setNmsScaleRadius (int nms_scale_radius)=0 |
|
virtual void | setNScales (int use_orientation)=0 |
|
virtual void | setPatchRadius (int patch_radius)=0 |
|
virtual void | setScaleFactor (float scale_factor)=0 |
|
virtual void | setSearchAreaRadius (int use_orientation)=0 |
|
virtual void | setThSaliency (float th_saliency)=0 |
|
virtual | ~Feature2D () |
|
virtual void | compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors) |
| Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).
|
|
virtual void | compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) |
|
virtual int | defaultNorm () const |
|
virtual int | descriptorSize () const |
|
virtual int | descriptorType () const |
|
virtual void | detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray()) |
| Detects keypoints in an image (first variant) or image set (second variant).
|
|
virtual void | detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray()) |
|
virtual void | detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false) |
|
virtual bool | empty () const CV_OVERRIDE |
| Return true if detector object is empty.
|
|
virtual void | read (const FileNode &) CV_OVERRIDE |
| Reads algorithm parameters from a file storage.
|
|
void | read (const String &fileName) |
|
void | write (const String &fileName) const |
|
virtual void | write (FileStorage &) const CV_OVERRIDE |
| Stores algorithm parameters in a file storage.
|
|
void | write (FileStorage &fs, const String &name) const |
|
| Algorithm () |
|
virtual | ~Algorithm () |
|
virtual void | clear () |
| Clears the algorithm state.
|
|
virtual void | save (const String &filename) const |
|
void | write (FileStorage &fs, const String &name) const |
|
|
static Ptr< MSDDetector > | create (int m_patch_radius=3, int m_search_area_radius=5, int m_nms_radius=5, int m_nms_scale_radius=0, float m_th_saliency=250.0f, int m_kNN=4, float m_scale_factor=1.25f, int m_n_scales=-1, bool m_compute_orientation=false) |
|
template<typename _Tp > |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
| Loads algorithm from the file.
|
|
template<typename _Tp > |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
| Loads algorithm from a String.
|
|
template<typename _Tp > |
static Ptr< _Tp > | read (const FileNode &fn) |
| Reads algorithm from the file node.
|
|
Class implementing the MSD (Maximal Self-Dissimilarity) keypoint detector, described in [272].
The algorithm implements a novel interest point detector stemming from the intuition that image patches which are highly dissimilar over a relatively large extent of their surroundings hold the property of being repeatable and distinctive. This concept of "contextual self-dissimilarity" reverses the key paradigm of recent successful techniques such as the Local Self-Similarity descriptor and the Non-Local Means filter, which build upon the presence of similar - rather than dissimilar - patches. Moreover, it extends to contextual information the local self-dissimilarity notion embedded in established detectors of corner-like interest points, thereby achieving enhanced repeatability, distinctiveness and localization accuracy.