OpenCV  5.0.0alpha
Open Source Computer Vision
Loading...
Searching...
No Matches
cv::gapi::onnx::detail::ParamDesc Struct Reference

This structure contains description of inference parameters which is specific to ONNX models. More...

#include <opencv2/gapi/infer/onnx.hpp>

Collaboration diagram for cv::gapi::onnx::detail::ParamDesc:

Public Types

using ConstInput = std::pair<cv::Mat, TraitAs>
 

Public Attributes

std::unordered_map< std::string, ConstInputconst_inputs
 Map with pair of name of network layer and ConstInput which will be associated with this.
 
PostProc custom_post_proc
 Post processing function.
 
bool disable_mem_pattern
 
std::vector< cv::gapi::onnx::ep::EPexecution_providers
 
std::unordered_map< std::string, std::pair< cv::Scalar, cv::Scalar > > generic_mstd
 
std::unordered_map< std::string, bool > generic_norm
 
std::vector< std::string > input_names
 Names of input network layers.
 
bool is_generic
 
std::vector< cv::Scalarmean
 Mean values for preprocessing.
 
std::string model_path
 Path to model.
 
std::vector< std::string > names_to_remap
 Names of output layers that will be processed in PostProc function.
 
std::vector< bool > normalize
 Vector of bool values that enabled or disabled normalize of input data.
 
std::size_t num_in
 How many inputs are defined in the operation.
 
std::size_t num_out
 How many outputs are defined in the operation.
 
cv::util::optional< int > opt_level
 
std::vector< cv::GMatDescout_metas
 Out meta information about your output (type, dimension).
 
std::vector< std::string > output_names
 Names of output network layers.
 
std::map< std::string, std::string > session_options
 
std::vector< cv::Scalarstdev
 Standard deviation values for preprocessing.
 

Detailed Description

This structure contains description of inference parameters which is specific to ONNX models.

Member Typedef Documentation

◆ ConstInput

Member Data Documentation

◆ const_inputs

std::unordered_map<std::string, ConstInput> cv::gapi::onnx::detail::ParamDesc::const_inputs

Map with pair of name of network layer and ConstInput which will be associated with this.

◆ custom_post_proc

PostProc cv::gapi::onnx::detail::ParamDesc::custom_post_proc

Post processing function.

◆ disable_mem_pattern

bool cv::gapi::onnx::detail::ParamDesc::disable_mem_pattern

◆ execution_providers

std::vector<cv::gapi::onnx::ep::EP> cv::gapi::onnx::detail::ParamDesc::execution_providers

◆ generic_mstd

std::unordered_map<std::string, std::pair<cv::Scalar, cv::Scalar> > cv::gapi::onnx::detail::ParamDesc::generic_mstd

◆ generic_norm

std::unordered_map<std::string, bool> cv::gapi::onnx::detail::ParamDesc::generic_norm

◆ input_names

std::vector<std::string> cv::gapi::onnx::detail::ParamDesc::input_names

Names of input network layers.

◆ is_generic

bool cv::gapi::onnx::detail::ParamDesc::is_generic

◆ mean

std::vector<cv::Scalar> cv::gapi::onnx::detail::ParamDesc::mean

Mean values for preprocessing.

◆ model_path

std::string cv::gapi::onnx::detail::ParamDesc::model_path

Path to model.

◆ names_to_remap

std::vector<std::string> cv::gapi::onnx::detail::ParamDesc::names_to_remap

Names of output layers that will be processed in PostProc function.

◆ normalize

std::vector<bool> cv::gapi::onnx::detail::ParamDesc::normalize

Vector of bool values that enabled or disabled normalize of input data.

◆ num_in

std::size_t cv::gapi::onnx::detail::ParamDesc::num_in

How many inputs are defined in the operation.

◆ num_out

std::size_t cv::gapi::onnx::detail::ParamDesc::num_out

How many outputs are defined in the operation.

◆ opt_level

cv::util::optional<int> cv::gapi::onnx::detail::ParamDesc::opt_level

◆ out_metas

std::vector<cv::GMatDesc> cv::gapi::onnx::detail::ParamDesc::out_metas

Out meta information about your output (type, dimension).

◆ output_names

std::vector<std::string> cv::gapi::onnx::detail::ParamDesc::output_names

Names of output network layers.

◆ session_options

std::map<std::string, std::string> cv::gapi::onnx::detail::ParamDesc::session_options

◆ stdev

std::vector<cv::Scalar> cv::gapi::onnx::detail::ParamDesc::stdev

Standard deviation values for preprocessing.


The documentation for this struct was generated from the following file: