Wrapping class for feature detection using the goodFeaturesToTrack function. :
More...
#include <opencv2/features2d.hpp>
|
virtual int | getBlockSize () const =0 |
|
virtual String | getDefaultName () const CV_OVERRIDE |
|
virtual int | getGradientSize ()=0 |
|
virtual bool | getHarrisDetector () const =0 |
|
virtual double | getK () const =0 |
|
virtual int | getMaxFeatures () const =0 |
|
virtual double | getMinDistance () const =0 |
|
virtual double | getQualityLevel () const =0 |
|
virtual void | setBlockSize (int blockSize)=0 |
|
virtual void | setGradientSize (int gradientSize_)=0 |
|
virtual void | setHarrisDetector (bool val)=0 |
|
virtual void | setK (double k)=0 |
|
virtual void | setMaxFeatures (int maxFeatures)=0 |
|
virtual void | setMinDistance (double minDistance)=0 |
|
virtual void | setQualityLevel (double qlevel)=0 |
|
virtual | ~Feature2D () |
|
virtual void | compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors) |
| Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).
|
|
virtual void | compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) |
|
virtual int | defaultNorm () const |
|
virtual int | descriptorSize () const |
|
virtual int | descriptorType () const |
|
virtual void | detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray()) |
| Detects keypoints in an image (first variant) or image set (second variant).
|
|
virtual void | detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray()) |
|
virtual void | detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false) |
|
virtual bool | empty () const CV_OVERRIDE |
| Return true if detector object is empty.
|
|
virtual void | read (const FileNode &) CV_OVERRIDE |
| Reads algorithm parameters from a file storage.
|
|
void | read (const String &fileName) |
|
void | write (const Ptr< FileStorage > &fs, const String &name) const |
|
void | write (const String &fileName) const |
|
virtual void | write (FileStorage &) const CV_OVERRIDE |
| Stores algorithm parameters in a file storage.
|
|
void | write (FileStorage &fs, const String &name) const |
|
| Algorithm () |
|
virtual | ~Algorithm () |
|
virtual void | clear () |
| Clears the algorithm state.
|
|
virtual void | save (const String &filename) const |
|
void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
|
void | write (FileStorage &fs, const String &name) const |
|
|
static Ptr< GFTTDetector > | create (int maxCorners, double qualityLevel, double minDistance, int blockSize, int gradiantSize, bool useHarrisDetector=false, double k=0.04) |
|
static Ptr< GFTTDetector > | create (int maxCorners=1000, double qualityLevel=0.01, double minDistance=1, int blockSize=3, bool useHarrisDetector=false, double k=0.04) |
|
template<typename _Tp > |
static Ptr< _Tp > | load (const String &filename, const String &objname=String()) |
| Loads algorithm from the file.
|
|
template<typename _Tp > |
static Ptr< _Tp > | loadFromString (const String &strModel, const String &objname=String()) |
| Loads algorithm from a String.
|
|
template<typename _Tp > |
static Ptr< _Tp > | read (const FileNode &fn) |
| Reads algorithm from the file node.
|
|
Wrapping class for feature detection using the goodFeaturesToTrack function. :
◆ create() [1/2]
static Ptr< GFTTDetector > cv::GFTTDetector::create |
( |
int | maxCorners, |
|
|
double | qualityLevel, |
|
|
double | minDistance, |
|
|
int | blockSize, |
|
|
int | gradiantSize, |
|
|
bool | useHarrisDetector = false, |
|
|
double | k = 0.04 ) |
|
static |
Python: |
---|
| cv.GFTTDetector.create( | [, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]] | ) -> | retval |
| cv.GFTTDetector.create( | maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]] | ) -> | retval |
| cv.GFTTDetector_create( | [, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]] | ) -> | retval |
| cv.GFTTDetector_create( | maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]] | ) -> | retval |
◆ create() [2/2]
static Ptr< GFTTDetector > cv::GFTTDetector::create |
( |
int | maxCorners = 1000, |
|
|
double | qualityLevel = 0.01, |
|
|
double | minDistance = 1, |
|
|
int | blockSize = 3, |
|
|
bool | useHarrisDetector = false, |
|
|
double | k = 0.04 ) |
|
static |
Python: |
---|
| cv.GFTTDetector.create( | [, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]] | ) -> | retval |
| cv.GFTTDetector.create( | maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]] | ) -> | retval |
| cv.GFTTDetector_create( | [, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]] | ) -> | retval |
| cv.GFTTDetector_create( | maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]] | ) -> | retval |
◆ getBlockSize()
virtual int cv::GFTTDetector::getBlockSize |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.getBlockSize( | | ) -> | retval |
◆ getDefaultName()
virtual String cv::GFTTDetector::getDefaultName |
( |
| ) |
const |
|
virtual |
Python: |
---|
| cv.GFTTDetector.getDefaultName( | | ) -> | retval |
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Reimplemented from cv::Feature2D.
◆ getGradientSize()
virtual int cv::GFTTDetector::getGradientSize |
( |
| ) |
|
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.getGradientSize( | | ) -> | retval |
◆ getHarrisDetector()
virtual bool cv::GFTTDetector::getHarrisDetector |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.getHarrisDetector( | | ) -> | retval |
◆ getK()
virtual double cv::GFTTDetector::getK |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.getK( | | ) -> | retval |
◆ getMaxFeatures()
virtual int cv::GFTTDetector::getMaxFeatures |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.getMaxFeatures( | | ) -> | retval |
◆ getMinDistance()
virtual double cv::GFTTDetector::getMinDistance |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.getMinDistance( | | ) -> | retval |
◆ getQualityLevel()
virtual double cv::GFTTDetector::getQualityLevel |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.getQualityLevel( | | ) -> | retval |
◆ setBlockSize()
virtual void cv::GFTTDetector::setBlockSize |
( |
int | blockSize | ) |
|
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.setBlockSize( | blockSize | ) -> | None |
◆ setGradientSize()
virtual void cv::GFTTDetector::setGradientSize |
( |
int | gradientSize_ | ) |
|
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.setGradientSize( | gradientSize_ | ) -> | None |
◆ setHarrisDetector()
virtual void cv::GFTTDetector::setHarrisDetector |
( |
bool | val | ) |
|
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.setHarrisDetector( | val | ) -> | None |
◆ setK()
virtual void cv::GFTTDetector::setK |
( |
double | k | ) |
|
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.setK( | k | ) -> | None |
◆ setMaxFeatures()
virtual void cv::GFTTDetector::setMaxFeatures |
( |
int | maxFeatures | ) |
|
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.setMaxFeatures( | maxFeatures | ) -> | None |
◆ setMinDistance()
virtual void cv::GFTTDetector::setMinDistance |
( |
double | minDistance | ) |
|
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.setMinDistance( | minDistance | ) -> | None |
◆ setQualityLevel()
virtual void cv::GFTTDetector::setQualityLevel |
( |
double | qlevel | ) |
|
|
pure virtual |
Python: |
---|
| cv.GFTTDetector.setQualityLevel( | qlevel | ) -> | None |
The documentation for this class was generated from the following file: