OpenCV  4.10.0-dev
Open Source Computer Vision
Loading...
Searching...
No Matches
cv::ml::SVMSGD Class Referenceabstract

Stochastic Gradient Descent SVM classifier. More...

#include <opencv2/ml.hpp>

Collaboration diagram for cv::ml::SVMSGD:

Public Types

enum  MarginType {
  SOFT_MARGIN ,
  HARD_MARGIN
}
 
enum  SvmsgdType {
  SGD ,
  ASGD
}
 
- Public Types inherited from cv::ml::StatModel
enum  Flags {
  UPDATE_MODEL = 1 ,
  RAW_OUTPUT =1 ,
  COMPRESSED_INPUT =2 ,
  PREPROCESSED_INPUT =4
}
 

Public Member Functions

virtual float getInitialStepSize () const =0
 Parameter initialStepSize of a SVMSGD optimization problem.
 
virtual float getMarginRegularization () const =0
 Parameter marginRegularization of a SVMSGD optimization problem.
 
virtual int getMarginType () const =0
 Margin type, one of SVMSGD::MarginType.
 
virtual float getShift ()=0
 
virtual float getStepDecreasingPower () const =0
 Parameter stepDecreasingPower of a SVMSGD optimization problem.
 
virtual int getSvmsgdType () const =0
 Algorithm type, one of SVMSGD::SvmsgdType.
 
virtual TermCriteria getTermCriteria () const =0
 Termination criteria of the training algorithm. You can specify the maximum number of iterations (maxCount) and/or how much the error could change between the iterations to make the algorithm continue (epsilon).
 
virtual Mat getWeights ()=0
 
virtual void setInitialStepSize (float InitialStepSize)=0
 Parameter initialStepSize of a SVMSGD optimization problem.
 
virtual void setMarginRegularization (float marginRegularization)=0
 Parameter marginRegularization of a SVMSGD optimization problem.
 
virtual void setMarginType (int marginType)=0
 Margin type, one of SVMSGD::MarginType.
 
virtual void setOptimalParameters (int svmsgdType=SVMSGD::ASGD, int marginType=SVMSGD::SOFT_MARGIN)=0
 Function sets optimal parameters values for chosen SVM SGD model.
 
virtual void setStepDecreasingPower (float stepDecreasingPower)=0
 Parameter stepDecreasingPower of a SVMSGD optimization problem.
 
virtual void setSvmsgdType (int svmsgdType)=0
 Algorithm type, one of SVMSGD::SvmsgdType.
 
virtual void setTermCriteria (const cv::TermCriteria &val)=0
 Termination criteria of the training algorithm. You can specify the maximum number of iterations (maxCount) and/or how much the error could change between the iterations to make the algorithm continue (epsilon).
 
- Public Member Functions inherited from cv::ml::StatModel
virtual float calcError (const Ptr< TrainData > &data, bool test, OutputArray resp) const
 Computes error on the training or test dataset.
 
virtual bool empty () const CV_OVERRIDE
 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read.
 
virtual int getVarCount () const =0
 Returns the number of variables in training samples.
 
virtual bool isClassifier () const =0
 Returns true if the model is classifier.
 
virtual bool isTrained () const =0
 Returns true if the model is trained.
 
virtual float predict (InputArray samples, OutputArray results=noArray(), int flags=0) const =0
 Predicts response(s) for the provided sample(s)
 
virtual bool train (const Ptr< TrainData > &trainData, int flags=0)
 Trains the statistical model.
 
virtual bool train (InputArray samples, int layout, InputArray responses)
 Trains the statistical model.
 
- Public Member Functions inherited from cv::Algorithm
 Algorithm ()
 
virtual ~Algorithm ()
 
virtual void clear ()
 Clears the algorithm state.
 
virtual String getDefaultName () const
 
virtual void read (const FileNode &fn)
 Reads algorithm parameters from a file storage.
 
virtual void save (const String &filename) const
 
void write (const Ptr< FileStorage > &fs, const String &name=String()) const
 
virtual void write (FileStorage &fs) const
 Stores algorithm parameters in a file storage.
 
void write (FileStorage &fs, const String &name) const
 

Static Public Member Functions

static Ptr< SVMSGDcreate ()
 Creates empty model. Use StatModel::train to train the model. Since SVMSGD has several parameters, you may want to find the best parameters for your problem or use setOptimalParameters() to set some default parameters.
 
static Ptr< SVMSGDload (const String &filepath, const String &nodeName=String())
 Loads and creates a serialized SVMSGD from a file.
 
- Static Public Member Functions inherited from cv::ml::StatModel
template<typename _Tp >
static Ptr< _Tptrain (const Ptr< TrainData > &data, int flags=0)
 Create and train model with default parameters.
 
- Static Public Member Functions inherited from cv::Algorithm
template<typename _Tp >
static Ptr< _Tpload (const String &filename, const String &objname=String())
 Loads algorithm from the file.
 
template<typename _Tp >
static Ptr< _TploadFromString (const String &strModel, const String &objname=String())
 Loads algorithm from a String.
 
template<typename _Tp >
static Ptr< _Tpread (const FileNode &fn)
 Reads algorithm from the file node.
 

Additional Inherited Members

- Protected Member Functions inherited from cv::Algorithm
void writeFormat (FileStorage &fs) const
 

Detailed Description

Stochastic Gradient Descent SVM classifier.

SVMSGD provides a fast and easy-to-use implementation of the SVM classifier using the Stochastic Gradient Descent approach, as presented in [35].

The classifier has following parameters:

  • model type,
  • margin type,
  • margin regularization ( \(\lambda\)),
  • initial step size ( \(\gamma_0\)),
  • step decreasing power ( \(c\)),
  • and termination criteria.

The model type may have one of the following values: SGD and ASGD.

  • SGD is the classic version of SVMSGD classifier: every next step is calculated by the formula

    \[w_{t+1} = w_t - \gamma(t) \frac{dQ_i}{dw} |_{w = w_t}\]

    where
    • \(w_t\) is the weights vector for decision function at step \(t\),
    • \(\gamma(t)\) is the step size of model parameters at the iteration \(t\), it is decreased on each step by the formula \(\gamma(t) = \gamma_0 (1 + \lambda \gamma_0 t) ^ {-c}\)
    • \(Q_i\) is the target functional from SVM task for sample with number \(i\), this sample is chosen stochastically on each step of the algorithm.
  • ASGD is Average Stochastic Gradient Descent SVM Classifier. ASGD classifier averages weights vector on each step of algorithm by the formula \(\widehat{w}_{t+1} = \frac{t}{1+t}\widehat{w}_{t} + \frac{1}{1+t}w_{t+1}\)

The recommended model type is ASGD (following [35]).

The margin type may have one of the following values: SOFT_MARGIN or HARD_MARGIN.

  • You should use HARD_MARGIN type, if you have linearly separable sets.
  • You should use SOFT_MARGIN type, if you have non-linearly separable sets or sets with outliers.
  • In the general case (if you know nothing about linear separability of your sets), use SOFT_MARGIN.

The other parameters may be described as follows:

  • Margin regularization parameter is responsible for weights decreasing at each step and for the strength of restrictions on outliers (the less the parameter, the less probability that an outlier will be ignored). Recommended value for SGD model is 0.0001, for ASGD model is 0.00001.
  • Initial step size parameter is the initial value for the step size \(\gamma(t)\). You will have to find the best initial step for your problem.
  • Step decreasing power is the power parameter for \(\gamma(t)\) decreasing by the formula, mentioned above. Recommended value for SGD model is 1, for ASGD model is 0.75.
  • Termination criteria can be TermCriteria::COUNT, TermCriteria::EPS or TermCriteria::COUNT + TermCriteria::EPS. You will have to find the best termination criteria for your problem.

Note that the parameters margin regularization, initial step size, and step decreasing power should be positive.

To use SVMSGD algorithm do as follows:

// Create empty object
// Train the Stochastic Gradient Descent SVM
svmsgd->train(trainData);
// Predict labels for the new samples
svmsgd->predict(samples, responses);
static Ptr< SVMSGD > create()
Creates empty model. Use StatModel::train to train the model. Since SVMSGD has several parameters,...
std::shared_ptr< _Tp > Ptr
Definition cvstd_wrapper.hpp:23

Member Enumeration Documentation

◆ MarginType

Margin type.

Enumerator
SOFT_MARGIN 

General case, suits to the case of non-linearly separable sets, allows outliers.

HARD_MARGIN 

More accurate for the case of linearly separable sets.

◆ SvmsgdType

SVMSGD type. ASGD is often the preferable choice.

Enumerator
SGD 

Stochastic Gradient Descent.

ASGD 

Average Stochastic Gradient Descent.

Member Function Documentation

◆ create()

static Ptr< SVMSGD > cv::ml::SVMSGD::create ( )
static
Python:
cv.ml.SVMSGD.create() -> retval
cv.ml.SVMSGD_create() -> retval

Creates empty model. Use StatModel::train to train the model. Since SVMSGD has several parameters, you may want to find the best parameters for your problem or use setOptimalParameters() to set some default parameters.

◆ getInitialStepSize()

virtual float cv::ml::SVMSGD::getInitialStepSize ( ) const
pure virtual
Python:
cv.ml.SVMSGD.getInitialStepSize() -> retval

Parameter initialStepSize of a SVMSGD optimization problem.

See also
setInitialStepSize

◆ getMarginRegularization()

virtual float cv::ml::SVMSGD::getMarginRegularization ( ) const
pure virtual
Python:
cv.ml.SVMSGD.getMarginRegularization() -> retval

Parameter marginRegularization of a SVMSGD optimization problem.

See also
setMarginRegularization

◆ getMarginType()

virtual int cv::ml::SVMSGD::getMarginType ( ) const
pure virtual
Python:
cv.ml.SVMSGD.getMarginType() -> retval

Margin type, one of SVMSGD::MarginType.

See also
setMarginType

◆ getShift()

virtual float cv::ml::SVMSGD::getShift ( )
pure virtual
Python:
cv.ml.SVMSGD.getShift() -> retval
Returns
the shift of the trained model (decision function f(x) = weights * x + shift).

◆ getStepDecreasingPower()

virtual float cv::ml::SVMSGD::getStepDecreasingPower ( ) const
pure virtual
Python:
cv.ml.SVMSGD.getStepDecreasingPower() -> retval

Parameter stepDecreasingPower of a SVMSGD optimization problem.

See also
setStepDecreasingPower

◆ getSvmsgdType()

virtual int cv::ml::SVMSGD::getSvmsgdType ( ) const
pure virtual
Python:
cv.ml.SVMSGD.getSvmsgdType() -> retval

Algorithm type, one of SVMSGD::SvmsgdType.

See also
setSvmsgdType

◆ getTermCriteria()

virtual TermCriteria cv::ml::SVMSGD::getTermCriteria ( ) const
pure virtual
Python:
cv.ml.SVMSGD.getTermCriteria() -> retval

Termination criteria of the training algorithm. You can specify the maximum number of iterations (maxCount) and/or how much the error could change between the iterations to make the algorithm continue (epsilon).

See also
setTermCriteria

◆ getWeights()

virtual Mat cv::ml::SVMSGD::getWeights ( )
pure virtual
Python:
cv.ml.SVMSGD.getWeights() -> retval
Returns
the weights of the trained model (decision function f(x) = weights * x + shift).

◆ load()

static Ptr< SVMSGD > cv::ml::SVMSGD::load ( const String & filepath,
const String & nodeName = String() )
static
Python:
cv.ml.SVMSGD.load(filepath[, nodeName]) -> retval
cv.ml.SVMSGD_load(filepath[, nodeName]) -> retval

Loads and creates a serialized SVMSGD from a file.

Use SVMSGD::save to serialize and store an SVMSGD to disk. Load the SVMSGD from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier

Parameters
filepathpath to serialized SVMSGD
nodeNamename of node containing the classifier

◆ setInitialStepSize()

virtual void cv::ml::SVMSGD::setInitialStepSize ( float InitialStepSize)
pure virtual
Python:
cv.ml.SVMSGD.setInitialStepSize(InitialStepSize) -> None

Parameter initialStepSize of a SVMSGD optimization problem.

See also
getInitialStepSize

◆ setMarginRegularization()

virtual void cv::ml::SVMSGD::setMarginRegularization ( float marginRegularization)
pure virtual
Python:
cv.ml.SVMSGD.setMarginRegularization(marginRegularization) -> None

Parameter marginRegularization of a SVMSGD optimization problem.

See also
getMarginRegularization

◆ setMarginType()

virtual void cv::ml::SVMSGD::setMarginType ( int marginType)
pure virtual
Python:
cv.ml.SVMSGD.setMarginType(marginType) -> None

Margin type, one of SVMSGD::MarginType.

See also
getMarginType

◆ setOptimalParameters()

virtual void cv::ml::SVMSGD::setOptimalParameters ( int svmsgdType = SVMSGD::ASGD,
int marginType = SVMSGD::SOFT_MARGIN )
pure virtual
Python:
cv.ml.SVMSGD.setOptimalParameters([, svmsgdType[, marginType]]) -> None

Function sets optimal parameters values for chosen SVM SGD model.

Parameters
svmsgdTypeis the type of SVMSGD classifier.
marginTypeis the type of margin constraint.

◆ setStepDecreasingPower()

virtual void cv::ml::SVMSGD::setStepDecreasingPower ( float stepDecreasingPower)
pure virtual
Python:
cv.ml.SVMSGD.setStepDecreasingPower(stepDecreasingPower) -> None

Parameter stepDecreasingPower of a SVMSGD optimization problem.

See also
getStepDecreasingPower

◆ setSvmsgdType()

virtual void cv::ml::SVMSGD::setSvmsgdType ( int svmsgdType)
pure virtual
Python:
cv.ml.SVMSGD.setSvmsgdType(svmsgdType) -> None

Algorithm type, one of SVMSGD::SvmsgdType.

See also
getSvmsgdType

◆ setTermCriteria()

virtual void cv::ml::SVMSGD::setTermCriteria ( const cv::TermCriteria & val)
pure virtual
Python:
cv.ml.SVMSGD.setTermCriteria(val) -> None

Termination criteria of the training algorithm. You can specify the maximum number of iterations (maxCount) and/or how much the error could change between the iterations to make the algorithm continue (epsilon).

See also
getTermCriteria

The documentation for this class was generated from the following file: