OpenCV  4.10.0-dev
Open Source Computer Vision
Loading...
Searching...
No Matches
Public Member Functions | List of all members
cv::dnn::SegmentationModel Class Reference

This class represents high-level API for segmentation models. More...

#include <opencv2/dnn/dnn.hpp>

Collaboration diagram for cv::dnn::SegmentationModel:

Public Member Functions

 SegmentationModel (const Net &network)
 Create model from deep learning network.
 
 SegmentationModel (CV_WRAP_FILE_PATH const String &model, CV_WRAP_FILE_PATH const String &config="")
 Create segmentation model from network represented in one of the supported formats. An order of model and config arguments does not matter.
 
void segment (InputArray frame, OutputArray mask)
 Given the input frame, create input blob, run net.
 
- Public Member Functions inherited from cv::dnn::Model
 Model ()
 
 Model (const Model &)=default
 
 Model (const Net &network)
 Create model from deep learning network.
 
 Model (CV_WRAP_FILE_PATH const String &model, CV_WRAP_FILE_PATH const String &config="")
 Create model from deep learning network represented in one of the supported formats. An order of model and config arguments does not matter.
 
 Model (Model &&)=default
 
ModelenableWinograd (bool useWinograd)
 
Impl * getImpl () const
 
Impl & getImplRef () const
 
NetgetNetwork_ ()
 
NetgetNetwork_ () const
 
 operator Net & () const
 
Modeloperator= (const Model &)=default
 
Modeloperator= (Model &&)=default
 
void predict (InputArray frame, OutputArrayOfArrays outs) const
 Given the input frame, create input blob, run net and return the output blobs.
 
ModelsetInputCrop (bool crop)
 Set flag crop for frame.
 
ModelsetInputMean (const Scalar &mean)
 Set mean value for frame.
 
void setInputParams (double scale=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false)
 Set preprocessing parameters for frame.
 
ModelsetInputScale (const Scalar &scale)
 Set scalefactor value for frame.
 
ModelsetInputSize (const Size &size)
 Set input size for frame.
 
ModelsetInputSize (int width, int height)
 
ModelsetInputSwapRB (bool swapRB)
 Set flag swapRB for frame.
 
ModelsetOutputNames (const std::vector< String > &outNames)
 Set output names for frame.
 
ModelsetPreferableBackend (dnn::Backend backendId)
 
ModelsetPreferableTarget (dnn::Target targetId)
 

Additional Inherited Members

- Protected Attributes inherited from cv::dnn::Model
Ptr< Impl > impl
 

Detailed Description

This class represents high-level API for segmentation models.

SegmentationModel allows to set params for preprocessing input image. SegmentationModel creates net from file with trained weights and config, sets preprocessing input, runs forward pass and returns the class prediction for each pixel.

Constructor & Destructor Documentation

◆ SegmentationModel() [1/2]

cv::dnn::SegmentationModel::SegmentationModel ( CV_WRAP_FILE_PATH const String model,
CV_WRAP_FILE_PATH const String config = "" 
)
Python:
cv.dnn.SegmentationModel(model[, config]) -> <dnn_SegmentationModel object>
cv.dnn.SegmentationModel(network) -> <dnn_SegmentationModel object>

Create segmentation model from network represented in one of the supported formats. An order of model and config arguments does not matter.

Parameters
[in]modelBinary file contains trained weights.
[in]configText file contains network configuration.

◆ SegmentationModel() [2/2]

cv::dnn::SegmentationModel::SegmentationModel ( const Net network)
Python:
cv.dnn.SegmentationModel(model[, config]) -> <dnn_SegmentationModel object>
cv.dnn.SegmentationModel(network) -> <dnn_SegmentationModel object>

Create model from deep learning network.

Parameters
[in]networkNet object.

Member Function Documentation

◆ segment()

void cv::dnn::SegmentationModel::segment ( InputArray  frame,
OutputArray  mask 
)
Python:
cv.dnn.SegmentationModel.segment(frame[, mask]) -> mask

Given the input frame, create input blob, run net.

Parameters
[in]frameThe input image.
[out]maskAllocated class prediction for each pixel

The documentation for this class was generated from the following file: