Package org.opencv.ximgproc
Class RICInterpolator
- java.lang.Object
- 
- org.opencv.core.Algorithm
- 
- org.opencv.ximgproc.SparseMatchInterpolator
- 
- org.opencv.ximgproc.RICInterpolator
 
 
 
- 
 public class RICInterpolator extends SparseMatchInterpolator Sparse match interpolation algorithm based on modified piecewise locally-weighted affine estimator called Robust Interpolation method of Correspondences or RIC from CITE: Hu2017 and Variational and Fast Global Smoother as post-processing filter. The RICInterpolator is a extension of the EdgeAwareInterpolator. Main concept of this extension is an piece-wise affine model based on over-segmentation via SLIC superpixel estimation. The method contains an efficient propagation mechanism to estimate among the pieces-wise models.
- 
- 
Constructor SummaryConstructors Modifier Constructor Description protectedRICInterpolator(long addr)
 - 
Method SummaryAll Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static RICInterpolator__fromPtr__(long addr)protected voidfinalize()floatgetAlpha()setAlpha SEE: setAlphafloatgetFGSLambda()setFGSLambda SEE: setFGSLambdafloatgetFGSSigma()setFGSSigma SEE: setFGSSigmaintgetK()setK SEE: setKfloatgetMaxFlow()setMaxFlow SEE: setMaxFlowintgetModelIter()setModelIter SEE: setModelIterbooleangetRefineModels()setRefineModels SEE: setRefineModelsintgetSuperpixelMode()setSuperpixelMode SEE: setSuperpixelModeintgetSuperpixelNNCnt()setSuperpixelNNCnt SEE: setSuperpixelNNCntfloatgetSuperpixelRuler()setSuperpixelRuler SEE: setSuperpixelRulerintgetSuperpixelSize()setSuperpixelSize SEE: setSuperpixelSizebooleangetUseGlobalSmootherFilter()setUseGlobalSmootherFilter SEE: setUseGlobalSmootherFilterbooleangetUseVariationalRefinement()setUseVariationalRefinement SEE: setUseVariationalRefinementvoidsetAlpha()Alpha is a parameter defining a global weight for transforming geodesic distance into weight.voidsetAlpha(float alpha)Alpha is a parameter defining a global weight for transforming geodesic distance into weight.voidsetCostMap(Mat costMap)Interface to provide a more elaborated cost map, i.e.voidsetFGSLambda()Sets the respective fastGlobalSmootherFilter() parameter.voidsetFGSLambda(float lambda)Sets the respective fastGlobalSmootherFilter() parameter.voidsetFGSSigma()Sets the respective fastGlobalSmootherFilter() parameter.voidsetFGSSigma(float sigma)Sets the respective fastGlobalSmootherFilter() parameter.voidsetK()K is a number of nearest-neighbor matches considered, when fitting a locally affine model for a superpixel segment.voidsetK(int k)K is a number of nearest-neighbor matches considered, when fitting a locally affine model for a superpixel segment.voidsetMaxFlow()MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model.voidsetMaxFlow(float maxFlow)MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model.voidsetModelIter()Parameter defining the number of iterations for piece-wise affine model estimation.voidsetModelIter(int modelIter)Parameter defining the number of iterations for piece-wise affine model estimation.voidsetRefineModels()Parameter to choose wether additional refinement of the piece-wise affine models is employed.voidsetRefineModels(boolean refineModles)Parameter to choose wether additional refinement of the piece-wise affine models is employed.voidsetSuperpixelMode()Parameter to choose superpixel algorithm variant to use: - cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100) - cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101) - cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).voidsetSuperpixelMode(int mode)Parameter to choose superpixel algorithm variant to use: - cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100) - cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101) - cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).voidsetSuperpixelNNCnt()Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine model.voidsetSuperpixelNNCnt(int spNN)Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine model.voidsetSuperpixelRuler()Parameter to tune enforcement of superpixel smoothness factor used for oversegmentation.voidsetSuperpixelRuler(float ruler)Parameter to tune enforcement of superpixel smoothness factor used for oversegmentation.voidsetSuperpixelSize()Get the internal cost, i.e.voidsetSuperpixelSize(int spSize)Get the internal cost, i.e.voidsetUseGlobalSmootherFilter()Sets whether the fastGlobalSmootherFilter() post-processing is employed.voidsetUseGlobalSmootherFilter(boolean use_FGS)Sets whether the fastGlobalSmootherFilter() post-processing is employed.voidsetUseVariationalRefinement()Parameter to choose wether the VariationalRefinement post-processing is employed.voidsetUseVariationalRefinement(boolean use_variational_refinement)Parameter to choose wether the VariationalRefinement post-processing is employed.- 
Methods inherited from class org.opencv.ximgproc.SparseMatchInterpolatorinterpolate
 - 
Methods inherited from class org.opencv.core.Algorithmclear, empty, getDefaultName, getNativeObjAddr, save
 
- 
 
- 
- 
- 
Method Detail- 
__fromPtr__public static RICInterpolator __fromPtr__(long addr) 
 - 
setKpublic void setK(int k) K is a number of nearest-neighbor matches considered, when fitting a locally affine model for a superpixel segment. However, lower values would make the interpolation noticeably faster. The original implementation of CITE: Hu2017 uses 32.- Parameters:
- k- automatically generated
 
 - 
setKpublic void setK() K is a number of nearest-neighbor matches considered, when fitting a locally affine model for a superpixel segment. However, lower values would make the interpolation noticeably faster. The original implementation of CITE: Hu2017 uses 32.
 - 
getKpublic int getK() setK SEE: setK- Returns:
- automatically generated
 
 - 
setCostMappublic void setCostMap(Mat costMap) Interface to provide a more elaborated cost map, i.e. edge map, for the edge-aware term. This implementation is based on a rather simple gradient-based edge map estimation. To used more complex edge map estimator (e.g. StructuredEdgeDetection that has been used in the original publication) that may lead to improved accuracies, the internal edge map estimation can be bypassed here.- Parameters:
- costMap- a type CV_32FC1 Mat is required. SEE: cv::ximgproc::createSuperpixelSLIC
 
 - 
setSuperpixelSizepublic void setSuperpixelSize(int spSize) Get the internal cost, i.e. edge map, used for estimating the edge-aware term. SEE: setCostMap- Parameters:
- spSize- automatically generated
 
 - 
setSuperpixelSizepublic void setSuperpixelSize() Get the internal cost, i.e. edge map, used for estimating the edge-aware term. SEE: setCostMap
 - 
getSuperpixelSizepublic int getSuperpixelSize() setSuperpixelSize SEE: setSuperpixelSize- Returns:
- automatically generated
 
 - 
setSuperpixelNNCntpublic void setSuperpixelNNCnt(int spNN) Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine model.- Parameters:
- spNN- automatically generated
 
 - 
setSuperpixelNNCntpublic void setSuperpixelNNCnt() Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine model.
 - 
getSuperpixelNNCntpublic int getSuperpixelNNCnt() setSuperpixelNNCnt SEE: setSuperpixelNNCnt- Returns:
- automatically generated
 
 - 
setSuperpixelRulerpublic void setSuperpixelRuler(float ruler) Parameter to tune enforcement of superpixel smoothness factor used for oversegmentation. SEE: cv::ximgproc::createSuperpixelSLIC- Parameters:
- ruler- automatically generated
 
 - 
setSuperpixelRulerpublic void setSuperpixelRuler() Parameter to tune enforcement of superpixel smoothness factor used for oversegmentation. SEE: cv::ximgproc::createSuperpixelSLIC
 - 
getSuperpixelRulerpublic float getSuperpixelRuler() setSuperpixelRuler SEE: setSuperpixelRuler- Returns:
- automatically generated
 
 - 
setSuperpixelModepublic void setSuperpixelMode(int mode) Parameter to choose superpixel algorithm variant to use: - cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100) - cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101) - cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102). SEE: cv::ximgproc::createSuperpixelSLIC- Parameters:
- mode- automatically generated
 
 - 
setSuperpixelModepublic void setSuperpixelMode() Parameter to choose superpixel algorithm variant to use: - cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100) - cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101) - cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102). SEE: cv::ximgproc::createSuperpixelSLIC
 - 
getSuperpixelModepublic int getSuperpixelMode() setSuperpixelMode SEE: setSuperpixelMode- Returns:
- automatically generated
 
 - 
setAlphapublic void setAlpha(float alpha) Alpha is a parameter defining a global weight for transforming geodesic distance into weight.- Parameters:
- alpha- automatically generated
 
 - 
setAlphapublic void setAlpha() Alpha is a parameter defining a global weight for transforming geodesic distance into weight.
 - 
getAlphapublic float getAlpha() setAlpha SEE: setAlpha- Returns:
- automatically generated
 
 - 
setModelIterpublic void setModelIter(int modelIter) Parameter defining the number of iterations for piece-wise affine model estimation.- Parameters:
- modelIter- automatically generated
 
 - 
setModelIterpublic void setModelIter() Parameter defining the number of iterations for piece-wise affine model estimation.
 - 
getModelIterpublic int getModelIter() setModelIter SEE: setModelIter- Returns:
- automatically generated
 
 - 
setRefineModelspublic void setRefineModels(boolean refineModles) Parameter to choose wether additional refinement of the piece-wise affine models is employed.- Parameters:
- refineModles- automatically generated
 
 - 
setRefineModelspublic void setRefineModels() Parameter to choose wether additional refinement of the piece-wise affine models is employed.
 - 
getRefineModelspublic boolean getRefineModels() setRefineModels SEE: setRefineModels- Returns:
- automatically generated
 
 - 
setMaxFlowpublic void setMaxFlow(float maxFlow) MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model. If the prediction exceeds the treshold the translational model will be applied instead.- Parameters:
- maxFlow- automatically generated
 
 - 
setMaxFlowpublic void setMaxFlow() MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model. If the prediction exceeds the treshold the translational model will be applied instead.
 - 
getMaxFlowpublic float getMaxFlow() setMaxFlow SEE: setMaxFlow- Returns:
- automatically generated
 
 - 
setUseVariationalRefinementpublic void setUseVariationalRefinement(boolean use_variational_refinement) Parameter to choose wether the VariationalRefinement post-processing is employed.- Parameters:
- use_variational_refinement- automatically generated
 
 - 
setUseVariationalRefinementpublic void setUseVariationalRefinement() Parameter to choose wether the VariationalRefinement post-processing is employed.
 - 
getUseVariationalRefinementpublic boolean getUseVariationalRefinement() setUseVariationalRefinement SEE: setUseVariationalRefinement- Returns:
- automatically generated
 
 - 
setUseGlobalSmootherFilterpublic void setUseGlobalSmootherFilter(boolean use_FGS) Sets whether the fastGlobalSmootherFilter() post-processing is employed.- Parameters:
- use_FGS- automatically generated
 
 - 
setUseGlobalSmootherFilterpublic void setUseGlobalSmootherFilter() Sets whether the fastGlobalSmootherFilter() post-processing is employed.
 - 
getUseGlobalSmootherFilterpublic boolean getUseGlobalSmootherFilter() setUseGlobalSmootherFilter SEE: setUseGlobalSmootherFilter- Returns:
- automatically generated
 
 - 
setFGSLambdapublic void setFGSLambda(float lambda) Sets the respective fastGlobalSmootherFilter() parameter.- Parameters:
- lambda- automatically generated
 
 - 
setFGSLambdapublic void setFGSLambda() Sets the respective fastGlobalSmootherFilter() parameter.
 - 
getFGSLambdapublic float getFGSLambda() setFGSLambda SEE: setFGSLambda- Returns:
- automatically generated
 
 - 
setFGSSigmapublic void setFGSSigma(float sigma) Sets the respective fastGlobalSmootherFilter() parameter.- Parameters:
- sigma- automatically generated
 
 - 
setFGSSigmapublic void setFGSSigma() Sets the respective fastGlobalSmootherFilter() parameter.
 - 
getFGSSigmapublic float getFGSSigma() setFGSSigma SEE: setFGSSigma- Returns:
- automatically generated
 
 - 
finalizeprotected void finalize() throws java.lang.Throwable- Overrides:
- finalizein class- SparseMatchInterpolator
- Throws:
- java.lang.Throwable
 
 
- 
 
-