Graph Based Segmentation Algorithm. The class implements the algorithm described in [77] .
More...
#include <opencv2/ximgproc/segmentation.hpp>
Graph Based Segmentation Algorithm. The class implements the algorithm described in [77] .
◆ getK()
virtual float cv::ximgproc::segmentation::GraphSegmentation::getK |
( |
| ) |
|
|
pure virtual |
Python: |
---|
| cv.ximgproc.segmentation.GraphSegmentation.getK( | | ) -> | retval |
◆ getMinSize()
virtual int cv::ximgproc::segmentation::GraphSegmentation::getMinSize |
( |
| ) |
|
|
pure virtual |
Python: |
---|
| cv.ximgproc.segmentation.GraphSegmentation.getMinSize( | | ) -> | retval |
◆ getSigma()
virtual double cv::ximgproc::segmentation::GraphSegmentation::getSigma |
( |
| ) |
|
|
pure virtual |
Python: |
---|
| cv.ximgproc.segmentation.GraphSegmentation.getSigma( | | ) -> | retval |
◆ processImage()
virtual void cv::ximgproc::segmentation::GraphSegmentation::processImage |
( |
InputArray |
src, |
|
|
OutputArray |
dst |
|
) |
| |
|
pure virtual |
Python: |
---|
| cv.ximgproc.segmentation.GraphSegmentation.processImage( | src[, dst] | ) -> | dst |
Segment an image and store output in dst.
- Parameters
-
src | The input image. Any number of channel (1 (Eg: Gray), 3 (Eg: RGB), 4 (Eg: RGB-D)) can be provided |
dst | The output segmentation. It's a CV_32SC1 Mat with the same number of cols and rows as input image, with an unique, sequential, id for each pixel. |
◆ setK()
virtual void cv::ximgproc::segmentation::GraphSegmentation::setK |
( |
float |
k | ) |
|
|
pure virtual |
Python: |
---|
| cv.ximgproc.segmentation.GraphSegmentation.setK( | k | ) -> | None |
◆ setMinSize()
virtual void cv::ximgproc::segmentation::GraphSegmentation::setMinSize |
( |
int |
min_size | ) |
|
|
pure virtual |
Python: |
---|
| cv.ximgproc.segmentation.GraphSegmentation.setMinSize( | min_size | ) -> | None |
◆ setSigma()
virtual void cv::ximgproc::segmentation::GraphSegmentation::setSigma |
( |
double |
sigma | ) |
|
|
pure virtual |
Python: |
---|
| cv.ximgproc.segmentation.GraphSegmentation.setSigma( | sigma | ) -> | None |
The documentation for this class was generated from the following file: