Linear Discriminant Analysis.  
 More...
#include <opencv2/core.hpp>
Linear Discriminant Analysis. 
- Todo:
- document this class 
◆ LDA() [1/2]
  
  | 
        
          | cv::LDA::LDA | ( | int | num_components = 0 | ) |  |  | explicit | 
 
constructor Initializes a LDA with num_components (default 0). 
 
 
◆ LDA() [2/2]
Initializes and performs a Discriminant Analysis with Fisher's Optimization Criterion on given data in src and corresponding labels in labels. If 0 (or less) number of components are given, they are automatically determined for given data in computation. 
 
 
◆ ~LDA()
◆ compute()
Compute the discriminants for data in src (row aligned) and labels. 
 
 
◆ eigenvalues()
  
  | 
        
          | Mat cv::LDA::eigenvalues | ( |  | ) | const |  | inline | 
 
Returns the eigenvalues of this LDA. 
 
 
◆ eigenvectors()
  
  | 
        
          | Mat cv::LDA::eigenvectors | ( |  | ) | const |  | inline | 
 
Returns the eigenvectors of this LDA. 
 
 
◆ lda()
◆ load() [1/2]
      
        
          | void cv::LDA::load | ( | const String & | filename | ) |  | 
      
 
Deserializes this object from a given filename. 
 
 
◆ load() [2/2]
◆ project()
Projects samples into the LDA subspace. src may be one or more row aligned samples. 
 
 
◆ reconstruct()
Reconstructs projections from the LDA subspace. src may be one or more row aligned projections. 
 
 
◆ save() [1/2]
      
        
          | void cv::LDA::save | ( | const String & | filename | ) | const | 
      
 
Serializes this object to a given filename. 
 
 
◆ save() [2/2]
◆ subspaceProject()
◆ subspaceReconstruct()
◆ _eigenvalues
  
  | 
        
          | Mat cv::LDA::_eigenvalues |  | protected | 
 
 
◆ _eigenvectors
  
  | 
        
          | Mat cv::LDA::_eigenvectors |  | protected | 
 
 
◆ _num_components
  
  | 
        
          | int cv::LDA::_num_components |  | protected | 
 
 
The documentation for this class was generated from the following file: