![]() |
OpenCV
4.7.0
Open Source Computer Vision
|
Namespaces | |
| accessor | |
| details | |
Classes | |
| struct | _Range |
| class | AbsLayer |
| class | AccumLayer |
| class | AcoshLayer |
| class | AcosLayer |
| class | ActivationLayer |
| class | ActivationLayerInt8 |
| class | ArgLayer |
| ArgMax/ArgMin layer. More... | |
| class | AsinhLayer |
| class | AsinLayer |
| class | AtanhLayer |
| class | AtanLayer |
| class | BackendNode |
| Derivatives of this class encapsulates functions of certain backends. More... | |
| class | BackendWrapper |
| Derivatives of this class wraps cv::Mat for different backends and targets. More... | |
| class | BaseConvolutionLayer |
| class | BatchNormLayer |
| class | BatchNormLayerInt8 |
| class | BlankLayer |
| class | BNLLLayer |
| class | CeilLayer |
| class | CeluLayer |
| class | ChannelsPReLULayer |
| class | ClassificationModel |
| This class represents high-level API for classification models. More... | |
| class | CompareLayer |
| class | ConcatLayer |
| class | ConstLayer |
| class | ConvolutionLayer |
| class | ConvolutionLayerInt8 |
| class | CorrelationLayer |
| class | CoshLayer |
| class | CosLayer |
| class | CropAndResizeLayer |
| class | CropLayer |
| class | CumSumLayer |
| class | DataAugmentationLayer |
| class | DeconvolutionLayer |
| class | DequantizeLayer |
| class | DetectionModel |
| This class represents high-level API for object detection networks. More... | |
| class | DetectionOutputLayer |
| Detection output layer. More... | |
| class | Dict |
| This class implements name-value dictionary, values are instances of DictValue. More... | |
| struct | DictValue |
| This struct stores the scalar value (or array) of one of the following type: double, cv::String or int64. More... | |
| class | EltwiseLayer |
| Element wise operation on inputs. More... | |
| class | EltwiseLayerInt8 |
| class | ELULayer |
| class | ErfLayer |
| class | ExpLayer |
| class | FlattenLayer |
| class | FloorLayer |
| class | FlowWarpLayer |
| class | GatherLayer |
| Gather layer. More... | |
| class | GRULayer |
| GRU recurrent one-layer. More... | |
| class | HardSigmoidLayer |
| class | HardSwishLayer |
| class | InnerProductLayer |
| class | InnerProductLayerInt8 |
| class | InterpLayer |
| Bilinear resize layer from https://github.com/cdmh/deeplab-public-ver2. More... | |
| class | KeypointsModel |
| This class represents high-level API for keypoints models. More... | |
| class | Layer |
| This interface class allows to build new Layers - are building blocks of networks. More... | |
| class | LayerFactory |
| Layer factory allows to create instances of registered layers. More... | |
| class | LayerParams |
| This class provides all data needed to initialize layer. More... | |
| class | LogLayer |
| class | LRNLayer |
| class | LSTMLayer |
| LSTM recurrent layer. More... | |
| class | MaxUnpoolLayer |
| class | MishLayer |
| class | Model |
| This class is presented high-level API for neural networks. More... | |
| class | MVNLayer |
| class | NaryEltwiseLayer |
| class | Net |
| This class allows to create and manipulate comprehensive artificial neural networks. More... | |
| class | NormalizeBBoxLayer |
| \( L_p \) - normalization layer. More... | |
| class | NotLayer |
| class | PaddingLayer |
| Adds extra values for specific axes. More... | |
| class | PermuteLayer |
| class | PoolingLayer |
| class | PoolingLayerInt8 |
| class | PowerLayer |
| class | PriorBoxLayer |
| class | ProposalLayer |
| class | QuantizeLayer |
| class | ReciprocalLayer |
| class | ReduceLayer |
| class | ReduceLayerInt8 |
| class | RegionLayer |
| class | ReLU6Layer |
| class | ReLULayer |
| class | ReorgLayer |
| class | RequantizeLayer |
| class | ReshapeLayer |
| class | ResizeLayer |
| Resize input 4-dimensional blob by nearest neighbor or bilinear strategy. More... | |
| class | RNNLayer |
| Classical recurrent layer. More... | |
| class | RoundLayer |
| class | ScaleLayer |
| class | ScaleLayerInt8 |
| class | ScatterLayer |
| class | ScatterNDLayer |
| class | SegmentationModel |
| This class represents high-level API for segmentation models. More... | |
| class | SeluLayer |
| class | ShiftLayer |
| class | ShiftLayerInt8 |
| class | ShrinkLayer |
| class | ShuffleChannelLayer |
| class | SigmoidLayer |
| class | SignLayer |
| class | SinhLayer |
| class | SinLayer |
| class | SliceLayer |
| class | SoftmaxLayer |
| class | SoftmaxLayerInt8 |
| class | SoftplusLayer |
| class | SoftsignLayer |
| class | SplitLayer |
| class | SqrtLayer |
| class | SwishLayer |
| class | TanHLayer |
| class | TanLayer |
| class | TextDetectionModel |
| Base class for text detection networks. More... | |
| class | TextDetectionModel_DB |
| This class represents high-level API for text detection DL networks compatible with DB model. More... | |
| class | TextDetectionModel_EAST |
| This class represents high-level API for text detection DL networks compatible with EAST model. More... | |
| class | TextRecognitionModel |
| This class represents high-level API for text recognition networks. More... | |
| class | ThresholdedReluLayer |
| class | TileLayer |
Typedefs | |
| typedef std::map< std::string, std::vector< LayerFactory::Constructor > > | LayerFactory_Impl |
| typedef std::vector< int > | MatShape |
Enumerations | |
| enum | Backend { DNN_BACKEND_DEFAULT = 0, DNN_BACKEND_HALIDE, DNN_BACKEND_INFERENCE_ENGINE, DNN_BACKEND_OPENCV, DNN_BACKEND_VKCOM, DNN_BACKEND_CUDA, DNN_BACKEND_WEBNN, DNN_BACKEND_TIMVX, DNN_BACKEND_CANN } |
| Enum of computation backends supported by layers. More... | |
| enum | SoftNMSMethod { SoftNMSMethod::SOFTNMS_LINEAR = 1, SoftNMSMethod::SOFTNMS_GAUSSIAN = 2 } |
| Enum of Soft NMS methods. More... | |
| enum | Target { DNN_TARGET_CPU = 0, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16, DNN_TARGET_MYRIAD, DNN_TARGET_VULKAN, DNN_TARGET_FPGA, DNN_TARGET_CUDA, DNN_TARGET_CUDA_FP16, DNN_TARGET_HDDL, DNN_TARGET_NPU } |
| Enum of target devices for computations. More... | |
Functions | |
| Mat | blobFromImage (InputArray image, double scalefactor=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false, int ddepth=CV_32F) |
Creates 4-dimensional blob from image. Optionally resizes and crops image from center, subtract mean values, scales values by scalefactor, swap Blue and Red channels. More... | |
| void | blobFromImage (InputArray image, OutputArray blob, double scalefactor=1.0, const Size &size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false, int ddepth=CV_32F) |
| Creates 4-dimensional blob from image. More... | |
| Mat | blobFromImages (InputArrayOfArrays images, double scalefactor=1.0, Size size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false, int ddepth=CV_32F) |
Creates 4-dimensional blob from series of images. Optionally resizes and crops images from center, subtract mean values, scales values by scalefactor, swap Blue and Red channels. More... | |
| void | blobFromImages (InputArrayOfArrays images, OutputArray blob, double scalefactor=1.0, Size size=Size(), const Scalar &mean=Scalar(), bool swapRB=false, bool crop=false, int ddepth=CV_32F) |
| Creates 4-dimensional blob from series of images. More... | |
| static MatShape | concat (const MatShape &a, const MatShape &b) |
| void | enableModelDiagnostics (bool isDiagnosticsMode) |
| Enables detailed logging of the DNN model loading with CV DNN API. More... | |
| std::vector< std::pair< Backend, Target > > | getAvailableBackends () |
| std::vector< Target > | getAvailableTargets (dnn::Backend be) |
| cv::String | getInferenceEngineBackendType () |
| Returns Inference Engine internal backend API. More... | |
| cv::String | getInferenceEngineCPUType () |
| Returns Inference Engine CPU type. More... | |
| cv::String | getInferenceEngineVPUType () |
| Returns Inference Engine VPU type. More... | |
| LayerFactory_Impl & | getLayerFactoryImpl () |
| Mutex & | getLayerFactoryMutex () |
| Get the mutex guarding LayerFactory_Impl, see getLayerFactoryImpl() function. More... | |
| static Mat | getPlane (const Mat &m, int n, int cn) |
| void | imagesFromBlob (const cv::Mat &blob_, OutputArrayOfArrays images_) |
| Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure (std::vector<cv::Mat>). More... | |
| static bool | isAllOnes (const MatShape &inputShape, int startPos, int endPos) |
| void | NMSBoxes (const std::vector< Rect > &bboxes, const std::vector< float > &scores, const float score_threshold, const float nms_threshold, std::vector< int > &indices, const float eta=1.f, const int top_k=0) |
| Performs non maximum suppression given boxes and corresponding scores. More... | |
| void | NMSBoxes (const std::vector< Rect2d > &bboxes, const std::vector< float > &scores, const float score_threshold, const float nms_threshold, std::vector< int > &indices, const float eta=1.f, const int top_k=0) |
| void | NMSBoxes (const std::vector< RotatedRect > &bboxes, const std::vector< float > &scores, const float score_threshold, const float nms_threshold, std::vector< int > &indices, const float eta=1.f, const int top_k=0) |
| void | NMSBoxesBatched (const std::vector< Rect > &bboxes, const std::vector< float > &scores, const std::vector< int > &class_ids, const float score_threshold, const float nms_threshold, std::vector< int > &indices, const float eta=1.f, const int top_k=0) |
| Performs batched non maximum suppression on given boxes and corresponding scores across different classes. More... | |
| void | NMSBoxesBatched (const std::vector< Rect2d > &bboxes, const std::vector< float > &scores, const std::vector< int > &class_ids, const float score_threshold, const float nms_threshold, std::vector< int > &indices, const float eta=1.f, const int top_k=0) |
| static int | normalize_axis (int axis, int dims) |
Converts axis from [-dims; dims) (similar to Python's slice notation) to [0; dims) range. More... | |
| static int | normalize_axis (int axis, const MatShape &shape) |
| static Range | normalize_axis_range (const Range &r, int axisSize) |
| template<typename _Tp > | |
| static std::ostream & | operator<< (std::ostream &out, const std::vector< _Tp > &shape) |
| template<typename _Tp > | |
| static void | print (const std::vector< _Tp > &shape, const String &name="") |
| Net | readNet (const String &model, const String &config="", const String &framework="") |
| Read deep learning network represented in one of the supported formats. More... | |
| Net | readNet (const String &framework, const std::vector< uchar > &bufferModel, const std::vector< uchar > &bufferConfig=std::vector< uchar >()) |
| Read deep learning network represented in one of the supported formats. More... | |
| Net | readNetFromCaffe (const String &prototxt, const String &caffeModel=String()) |
| Reads a network model stored in Caffe framework's format. More... | |
| Net | readNetFromCaffe (const std::vector< uchar > &bufferProto, const std::vector< uchar > &bufferModel=std::vector< uchar >()) |
| Reads a network model stored in Caffe model in memory. More... | |
| Net | readNetFromCaffe (const char *bufferProto, size_t lenProto, const char *bufferModel=NULL, size_t lenModel=0) |
| Reads a network model stored in Caffe model in memory. More... | |
| Net | readNetFromDarknet (const String &cfgFile, const String &darknetModel=String()) |
| Reads a network model stored in Darknet model files. More... | |
| Net | readNetFromDarknet (const std::vector< uchar > &bufferCfg, const std::vector< uchar > &bufferModel=std::vector< uchar >()) |
| Reads a network model stored in Darknet model files. More... | |
| Net | readNetFromDarknet (const char *bufferCfg, size_t lenCfg, const char *bufferModel=NULL, size_t lenModel=0) |
| Reads a network model stored in Darknet model files. More... | |
| Net | readNetFromModelOptimizer (const String &xml, const String &bin) |
| Load a network from Intel's Model Optimizer intermediate representation. More... | |
| Net | readNetFromModelOptimizer (const std::vector< uchar > &bufferModelConfig, const std::vector< uchar > &bufferWeights) |
| Load a network from Intel's Model Optimizer intermediate representation. More... | |
| Net | readNetFromModelOptimizer (const uchar *bufferModelConfigPtr, size_t bufferModelConfigSize, const uchar *bufferWeightsPtr, size_t bufferWeightsSize) |
| Load a network from Intel's Model Optimizer intermediate representation. More... | |
| Net | readNetFromONNX (const String &onnxFile) |
| Reads a network model ONNX. More... | |
| Net | readNetFromONNX (const char *buffer, size_t sizeBuffer) |
| Reads a network model from ONNX in-memory buffer. More... | |
| Net | readNetFromONNX (const std::vector< uchar > &buffer) |
| Reads a network model from ONNX in-memory buffer. More... | |
| Net | readNetFromTensorflow (const String &model, const String &config=String()) |
| Reads a network model stored in TensorFlow framework's format. More... | |
| Net | readNetFromTensorflow (const std::vector< uchar > &bufferModel, const std::vector< uchar > &bufferConfig=std::vector< uchar >()) |
| Reads a network model stored in TensorFlow framework's format. More... | |
| Net | readNetFromTensorflow (const char *bufferModel, size_t lenModel, const char *bufferConfig=NULL, size_t lenConfig=0) |
| Reads a network model stored in TensorFlow framework's format. More... | |
| Net | readNetFromTorch (const String &model, bool isBinary=true, bool evaluate=true) |
| Reads a network model stored in Torch7 framework's format. More... | |
| Mat | readTensorFromONNX (const String &path) |
| Creates blob from .pb file. More... | |
| Mat | readTorchBlob (const String &filename, bool isBinary=true) |
| Loads blob which was serialized as torch.Tensor object of Torch7 framework. More... | |
| void | releaseHDDLPlugin () |
| Release a HDDL plugin. More... | |
| void | resetMyriadDevice () |
| Release a Myriad device (binded by OpenCV). More... | |
| cv::String | setInferenceEngineBackendType (const cv::String &newBackendType) |
| Specify Inference Engine internal backend API. More... | |
| static MatShape | shape (const int *dims, const int n) |
| static MatShape | shape (const Mat &mat) |
| static MatShape | shape (const MatSize &sz) |
| static MatShape | shape (const UMat &mat) |
| static MatShape | shape (int a0, int a1=-1, int a2=-1, int a3=-1) |
| void | shrinkCaffeModel (const String &src, const String &dst, const std::vector< String > &layersTypes=std::vector< String >()) |
| Convert all weights of Caffe network to half precision floating point. More... | |
| void | skipModelImport (bool skip) |
| Skip model import after diagnostic run in readNet() functions. More... | |
| static Mat | slice (const Mat &m, const _Range &r0) |
| static Mat | slice (const Mat &m, const _Range &r0, const _Range &r1) |
| static Mat | slice (const Mat &m, const _Range &r0, const _Range &r1, const _Range &r2) |
| static Mat | slice (const Mat &m, const _Range &r0, const _Range &r1, const _Range &r2, const _Range &r3) |
| void | softNMSBoxes (const std::vector< Rect > &bboxes, const std::vector< float > &scores, std::vector< float > &updated_scores, const float score_threshold, const float nms_threshold, std::vector< int > &indices, size_t top_k=0, const float sigma=0.5, SoftNMSMethod method=SoftNMSMethod::SOFTNMS_GAUSSIAN) |
| Performs soft non maximum suppression given boxes and corresponding scores. Reference: https://arxiv.org/abs/1704.04503. More... | |
| template<typename _Tp > | |
| static std::string | toString (const std::vector< _Tp > &shape, const String &name="") |
| static int | total (const MatShape &shape, int start=-1, int end=-1) |
| static int | total (const Mat &mat, int start=-1, int end=-1) |
| void | writeTextGraph (const String &model, const String &output) |
| Create a text representation for a binary network stored in protocol buffer format. More... | |
| cv::String cv::dnn::getInferenceEngineBackendType | ( | ) |
Returns Inference Engine internal backend API.
See values of CV_DNN_BACKEND_INFERENCE_ENGINE_* macros.
OPENCV_DNN_BACKEND_INFERENCE_ENGINE_TYPE runtime parameter (environment variable) is ignored since 4.6.0.
| cv::String cv::dnn::getInferenceEngineCPUType | ( | ) |
Returns Inference Engine CPU type.
Specify OpenVINO plugin: CPU or ARM.
| cv::String cv::dnn::getInferenceEngineVPUType | ( | ) |
Returns Inference Engine VPU type.
See values of CV_DNN_INFERENCE_ENGINE_VPU_TYPE_* macros.
|
inlinestatic |
|
inlinestatic |
Converts axis from [-dims; dims) (similar to Python's slice notation) to [0; dims) range.
|
inlinestatic |
|
inlinestatic |
|
inlinestatic |
| void cv::dnn::releaseHDDLPlugin | ( | ) |
Release a HDDL plugin.
| void cv::dnn::resetMyriadDevice | ( | ) |
Release a Myriad device (binded by OpenCV).
Single Myriad device cannot be shared across multiple processes which uses Inference Engine's Myriad plugin.
| cv::String cv::dnn::setInferenceEngineBackendType | ( | const cv::String & | newBackendType | ) |
Specify Inference Engine internal backend API.
See values of CV_DNN_BACKEND_INFERENCE_ENGINE_* macros.
|
inlinestatic |
|
inlinestatic |
| void cv::dnn::skipModelImport | ( | bool | skip | ) |
Skip model import after diagnostic run in readNet() functions.
| [in] | skip | Indicates whether to skip the import. |
This is an internal OpenCV function not intended for users.
|
inlinestatic |
|
inlinestatic |
|
inlinestatic |
|
inlinestatic |
|
inlinestatic |
1.8.13