Disparity map filter based on Weighted Least Squares filter (in form of Fast Global Smoother that is a lot faster than traditional Weighted Least Squares filter implementations) and optional use of left-right-consistency-based confidence to refine the results in half-occlusions and uniform areas.  
 More...
#include <opencv2/ximgproc/disparity_filter.hpp>
|  | 
| virtual Mat | getConfidenceMap ()=0 | 
|  | Get the confidence map that was used in the last filter call. It is a CV_32F one-channel image with values ranging from 0.0 (totally untrusted regions of the raw disparity map) to 255.0 (regions containing correct disparity values with a high degree of confidence).  More... 
 | 
|  | 
| virtual int | getDepthDiscontinuityRadius ()=0 | 
|  | DepthDiscontinuityRadius is a parameter used in confidence computation. It defines the size of low-confidence regions around depth discontinuities.  More... 
 | 
|  | 
| virtual double | getLambda ()=0 | 
|  | Lambda is a parameter defining the amount of regularization during filtering. Larger values force filtered disparity map edges to adhere more to source image edges. Typical value is 8000.  More... 
 | 
|  | 
| virtual int | getLRCthresh ()=0 | 
|  | LRCthresh is a threshold of disparity difference used in left-right-consistency check during confidence map computation. The default value of 24 (1.5 pixels) is virtually always good enough.  More... 
 | 
|  | 
| virtual Rect | getROI ()=0 | 
|  | Get the ROI used in the last filter call.  More... 
 | 
|  | 
| virtual double | getSigmaColor ()=0 | 
|  | SigmaColor is a parameter defining how sensitive the filtering process is to source image edges. Large values can lead to disparity leakage through low-contrast edges. Small values can make the filter too sensitive to noise and textures in the source image. Typical values range from 0.8 to 2.0.  More... 
 | 
|  | 
| virtual void | setDepthDiscontinuityRadius (int _disc_radius)=0 | 
|  | 
| virtual void | setLambda (double _lambda)=0 | 
|  | 
| virtual void | setLRCthresh (int _LRC_thresh)=0 | 
|  | 
| virtual void | setSigmaColor (double _sigma_color)=0 | 
|  | 
| virtual void | filter (InputArray disparity_map_left, InputArray left_view, OutputArray filtered_disparity_map, InputArray disparity_map_right=Mat(), Rect ROI=Rect(), InputArray right_view=Mat())=0 | 
|  | Apply filtering to the disparity map.  More... 
 | 
|  | 
|  | Algorithm () | 
|  | 
| virtual | ~Algorithm () | 
|  | 
| virtual void | clear () | 
|  | Clears the algorithm state.  More... 
 | 
|  | 
| virtual bool | empty () const | 
|  | Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read.  More... 
 | 
|  | 
| virtual String | getDefaultName () const | 
|  | 
| virtual void | read (const FileNode &fn) | 
|  | Reads algorithm parameters from a file storage.  More... 
 | 
|  | 
| virtual void | save (const String &filename) const | 
|  | 
| virtual void | write (FileStorage &fs) const | 
|  | Stores algorithm parameters in a file storage.  More... 
 | 
|  | 
| void | write (const Ptr< FileStorage > &fs, const String &name=String()) const | 
|  | simplified API for language bindings This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.  More... 
 | 
|  | 
Disparity map filter based on Weighted Least Squares filter (in form of Fast Global Smoother that is a lot faster than traditional Weighted Least Squares filter implementations) and optional use of left-right-consistency-based confidence to refine the results in half-occlusions and uniform areas. 
◆ getConfidenceMap()
  
  | 
        
          | virtual Mat cv::ximgproc::DisparityWLSFilter::getConfidenceMap | ( |  | ) |  |  | pure virtual | 
| Python: | 
|---|
|  | cv.ximgproc.DisparityWLSFilter.getConfidenceMap( |  | ) -> | retval | 
 
Get the confidence map that was used in the last filter call. It is a CV_32F one-channel image with values ranging from 0.0 (totally untrusted regions of the raw disparity map) to 255.0 (regions containing correct disparity values with a high degree of confidence). 
 
 
◆ getDepthDiscontinuityRadius()
  
  | 
        
          | virtual int cv::ximgproc::DisparityWLSFilter::getDepthDiscontinuityRadius | ( |  | ) |  |  | pure virtual | 
| Python: | 
|---|
|  | cv.ximgproc.DisparityWLSFilter.getDepthDiscontinuityRadius( |  | ) -> | retval | 
 
DepthDiscontinuityRadius is a parameter used in confidence computation. It defines the size of low-confidence regions around depth discontinuities. 
 
 
◆ getLambda()
  
  | 
        
          | virtual double cv::ximgproc::DisparityWLSFilter::getLambda | ( |  | ) |  |  | pure virtual | 
| Python: | 
|---|
|  | cv.ximgproc.DisparityWLSFilter.getLambda( |  | ) -> | retval | 
 
Lambda is a parameter defining the amount of regularization during filtering. Larger values force filtered disparity map edges to adhere more to source image edges. Typical value is 8000. 
filter parameters 
 
 
◆ getLRCthresh()
  
  | 
        
          | virtual int cv::ximgproc::DisparityWLSFilter::getLRCthresh | ( |  | ) |  |  | pure virtual | 
| Python: | 
|---|
|  | cv.ximgproc.DisparityWLSFilter.getLRCthresh( |  | ) -> | retval | 
 
LRCthresh is a threshold of disparity difference used in left-right-consistency check during confidence map computation. The default value of 24 (1.5 pixels) is virtually always good enough. 
confidence-related parameters 
 
 
◆ getROI()
  
  | 
        
          | virtual Rect cv::ximgproc::DisparityWLSFilter::getROI | ( |  | ) |  |  | pure virtual | 
| Python: | 
|---|
|  | cv.ximgproc.DisparityWLSFilter.getROI( |  | ) -> | retval | 
 
Get the ROI used in the last filter call. 
 
 
◆ getSigmaColor()
  
  | 
        
          | virtual double cv::ximgproc::DisparityWLSFilter::getSigmaColor | ( |  | ) |  |  | pure virtual | 
| Python: | 
|---|
|  | cv.ximgproc.DisparityWLSFilter.getSigmaColor( |  | ) -> | retval | 
 
SigmaColor is a parameter defining how sensitive the filtering process is to source image edges. Large values can lead to disparity leakage through low-contrast edges. Small values can make the filter too sensitive to noise and textures in the source image. Typical values range from 0.8 to 2.0. 
 
 
◆ setDepthDiscontinuityRadius()
  
  | 
        
          | virtual void cv::ximgproc::DisparityWLSFilter::setDepthDiscontinuityRadius | ( | int | _disc_radius | ) |  |  | pure virtual | 
| Python: | 
|---|
|  | cv.ximgproc.DisparityWLSFilter.setDepthDiscontinuityRadius( | _disc_radius | ) -> | None | 
 
 
◆ setLambda()
  
  | 
        
          | virtual void cv::ximgproc::DisparityWLSFilter::setLambda | ( | double | _lambda | ) |  |  | pure virtual | 
| Python: | 
|---|
|  | cv.ximgproc.DisparityWLSFilter.setLambda( | _lambda | ) -> | None | 
 
 
◆ setLRCthresh()
  
  | 
        
          | virtual void cv::ximgproc::DisparityWLSFilter::setLRCthresh | ( | int | _LRC_thresh | ) |  |  | pure virtual | 
| Python: | 
|---|
|  | cv.ximgproc.DisparityWLSFilter.setLRCthresh( | _LRC_thresh | ) -> | None | 
 
 
◆ setSigmaColor()
  
  | 
        
          | virtual void cv::ximgproc::DisparityWLSFilter::setSigmaColor | ( | double | _sigma_color | ) |  |  | pure virtual | 
| Python: | 
|---|
|  | cv.ximgproc.DisparityWLSFilter.setSigmaColor( | _sigma_color | ) -> | None | 
 
 
The documentation for this class was generated from the following file: