|  | 
| void | cv::intensity_transform::autoscaling (const Mat input, Mat &output) | 
|  | Given an input bgr or grayscale image, apply autoscaling on domain [0, 255] to increase the contrast of the input image and return the resulting image.  More... 
 | 
|  | 
| void | cv::intensity_transform::BIMEF (InputArray input, OutputArray output, float mu=0.5f, float a=-0.3293f, float b=1.1258f) | 
|  | Given an input color image, enhance low-light images using the BIMEF method ([284] [285]).  More... 
 | 
|  | 
| void | cv::intensity_transform::BIMEF (InputArray input, OutputArray output, float k, float mu, float a, float b) | 
|  | Given an input color image, enhance low-light images using the BIMEF method ([284] [285]).  More... 
 | 
|  | 
| void | cv::intensity_transform::contrastStretching (const Mat input, Mat &output, const int r1, const int s1, const int r2, const int s2) | 
|  | Given an input bgr or grayscale image, apply linear contrast stretching on domain [0, 255] and return the resulting image.  More... 
 | 
|  | 
| void | cv::intensity_transform::gammaCorrection (const Mat input, Mat &output, const float gamma) | 
|  | Given an input bgr or grayscale image and constant gamma, apply power-law transformation, a.k.a. gamma correction to the image on domain [0, 255] and return the resulting image.  More... 
 | 
|  | 
| void | cv::intensity_transform::logTransform (const Mat input, Mat &output) | 
|  | Given an input bgr or grayscale image and constant c, apply log transformation to the image on domain [0, 255] and return the resulting image.  More... 
 | 
|  | 
Namespace for all functions is cv::intensity_transform.
Supported Algorithms
- Autoscaling
- Log Transformations
- Power-Law (Gamma) Transformations
- Contrast Stretching
- BIMEF, A Bio-Inspired Multi-Exposure Fusion Framework for Low-light Image Enhancement [284] [285]
References from following book and websites:
◆ autoscaling()
      
        
          | void cv::intensity_transform::autoscaling | ( | const Mat | input, | 
        
          |  |  | Mat & | output | 
        
          |  | ) |  |  | 
      
| Python: | 
|---|
|  | cv.intensity_transform.autoscaling( | input, output | ) -> | None | 
 
#include <opencv2/intensity_transform.hpp>
Given an input bgr or grayscale image, apply autoscaling on domain [0, 255] to increase the contrast of the input image and return the resulting image. 
- Parameters
- 
  
    | input | input bgr or grayscale image. |  | output | resulting image of autoscaling. |  
 
 
 
◆ BIMEF() [1/2]
      
        
          | void cv::intensity_transform::BIMEF | ( | InputArray | input, | 
        
          |  |  | OutputArray | output, | 
        
          |  |  | float | mu = 0.5f, | 
        
          |  |  | float | a = -0.3293f, | 
        
          |  |  | float | b = 1.1258f | 
        
          |  | ) |  |  | 
      
| Python: | 
|---|
|  | cv.intensity_transform.BIMEF( | input[, output[, mu[, a[, b]]]] | ) -> | output | 
|  | cv.intensity_transform.BIMEF2( | input, k, mu, a, b[, output] | ) -> | output | 
 
#include <opencv2/intensity_transform.hpp>
Given an input color image, enhance low-light images using the BIMEF method ([284] [285]). 
- Parameters
- 
  
    | input | input color image. |  | output | resulting image. |  | mu | enhancement ratio. |  | a | a-parameter in the Camera Response Function (CRF). |  | b | b-parameter in the Camera Response Function (CRF). |  
 
- Warning
- This is a C++ implementation of the original MATLAB algorithm. Compared to the original code, this implementation is a little bit slower and does not provide the same results. In particular, quality of the image enhancement is degraded for the bright areas in certain conditions. 
 
 
◆ BIMEF() [2/2]
      
        
          | void cv::intensity_transform::BIMEF | ( | InputArray | input, | 
        
          |  |  | OutputArray | output, | 
        
          |  |  | float | k, | 
        
          |  |  | float | mu, | 
        
          |  |  | float | a, | 
        
          |  |  | float | b | 
        
          |  | ) |  |  | 
      
| Python: | 
|---|
|  | cv.intensity_transform.BIMEF( | input[, output[, mu[, a[, b]]]] | ) -> | output | 
|  | cv.intensity_transform.BIMEF2( | input, k, mu, a, b[, output] | ) -> | output | 
 
#include <opencv2/intensity_transform.hpp>
Given an input color image, enhance low-light images using the BIMEF method ([284] [285]). 
This is an overloaded function with the exposure ratio given as parameter.
- Parameters
- 
  
    | input | input color image. |  | output | resulting image. |  | k | exposure ratio. |  | mu | enhancement ratio. |  | a | a-parameter in the Camera Response Function (CRF). |  | b | b-parameter in the Camera Response Function (CRF). |  
 
- Warning
- This is a C++ implementation of the original MATLAB algorithm. Compared to the original code, this implementation is a little bit slower and does not provide the same results. In particular, quality of the image enhancement is degraded for the bright areas in certain conditions. 
 
 
◆ contrastStretching()
      
        
          | void cv::intensity_transform::contrastStretching | ( | const Mat | input, | 
        
          |  |  | Mat & | output, | 
        
          |  |  | const int | r1, | 
        
          |  |  | const int | s1, | 
        
          |  |  | const int | r2, | 
        
          |  |  | const int | s2 | 
        
          |  | ) |  |  | 
      
| Python: | 
|---|
|  | cv.intensity_transform.contrastStretching( | input, output, r1, s1, r2, s2 | ) -> | None | 
 
#include <opencv2/intensity_transform.hpp>
Given an input bgr or grayscale image, apply linear contrast stretching on domain [0, 255] and return the resulting image. 
- Parameters
- 
  
    | input | input bgr or grayscale image. |  | output | resulting image of contrast stretching. |  | r1 | x coordinate of first point (r1, s1) in the transformation function. |  | s1 | y coordinate of first point (r1, s1) in the transformation function. |  | r2 | x coordinate of second point (r2, s2) in the transformation function. |  | s2 | y coordinate of second point (r2, s2) in the transformation function. |  
 
 
 
◆ gammaCorrection()
      
        
          | void cv::intensity_transform::gammaCorrection | ( | const Mat | input, | 
        
          |  |  | Mat & | output, | 
        
          |  |  | const float | gamma | 
        
          |  | ) |  |  | 
      
| Python: | 
|---|
|  | cv.intensity_transform.gammaCorrection( | input, output, gamma | ) -> | None | 
 
#include <opencv2/intensity_transform.hpp>
Given an input bgr or grayscale image and constant gamma, apply power-law transformation, a.k.a. gamma correction to the image on domain [0, 255] and return the resulting image. 
- Parameters
- 
  
    | input | input bgr or grayscale image. |  | output | resulting image of gamma corrections. |  | gamma | constant in c*r^gamma where r is pixel value. |  
 
 
 
◆ logTransform()
      
        
          | void cv::intensity_transform::logTransform | ( | const Mat | input, | 
        
          |  |  | Mat & | output | 
        
          |  | ) |  |  | 
      
| Python: | 
|---|
|  | cv.intensity_transform.logTransform( | input, output | ) -> | None | 
 
#include <opencv2/intensity_transform.hpp>
Given an input bgr or grayscale image and constant c, apply log transformation to the image on domain [0, 255] and return the resulting image. 
- Parameters
- 
  
    | input | input bgr or grayscale image. |  | output | resulting image of log transformations. |