Package org.opencv.xfeatures2d
Class BEBLID
- java.lang.Object
-
- org.opencv.core.Algorithm
-
- org.opencv.features2d.Feature2D
-
- org.opencv.xfeatures2d.BEBLID
-
public class BEBLID extends Feature2D
Class implementing BEBLID (Boosted Efficient Binary Local Image Descriptor), described in CITE: Suarez2020BEBLID . BEBLID \cite Suarez2020BEBLID is a efficient binary descriptor learned with boosting. It is able to describe keypoints from any detector just by changing the scale_factor parameter. In several benchmarks it has proved to largely improve other binary descriptors like ORB or BRISK with the same efficiency. BEBLID describes using the difference of mean gray values in different regions of the image around the KeyPoint, the descriptor is specifically optimized for image matching and patch retrieval addressing the asymmetries of these problems. If you find this code useful, please add a reference to the following paper: <BLOCKQUOTE> Iago Suárez, Ghesn Sfeir, José M. Buenaposada, and Luis Baumela. BEBLID: Boosted efficient binary local image descriptor. Pattern Recognition Letters, 133:366–372, 2020. </BLOCKQUOTE> The descriptor was trained using 1 million of randomly sampled pairs of patches (20% positives and 80% negatives) from the Liberty split of the UBC datasets \cite winder2007learning as described in the paper CITE: Suarez2020BEBLID. You can check in the [AKAZE example](https://raw.githubusercontent.com/opencv/opencv/master/samples/cpp/tutorial_code/features2D/AKAZE_match.cpp) how well BEBLID works. Detecting 10000 keypoints with ORB and describing with BEBLID obtains 561 inliers (75%) whereas describing with ORB obtains only 493 inliers (63%).
-
-
Field Summary
Fields Modifier and Type Field Description static int
SIZE_256_BITS
static int
SIZE_512_BITS
-
Constructor Summary
Constructors Modifier Constructor Description protected
BEBLID(long addr)
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static BEBLID
__fromPtr__(long addr)
static BEBLID
create(float scale_factor)
Creates the BEBLID descriptor.static BEBLID
create(float scale_factor, int n_bits)
Creates the BEBLID descriptor.protected void
finalize()
-
Methods inherited from class org.opencv.features2d.Feature2D
compute, compute, defaultNorm, descriptorSize, descriptorType, detect, detect, detect, detect, detectAndCompute, detectAndCompute, empty, getDefaultName, read, write
-
Methods inherited from class org.opencv.core.Algorithm
clear, getNativeObjAddr, save
-
-
-
-
Field Detail
-
SIZE_512_BITS
public static final int SIZE_512_BITS
- See Also:
- Constant Field Values
-
SIZE_256_BITS
public static final int SIZE_256_BITS
- See Also:
- Constant Field Values
-
-
Method Detail
-
__fromPtr__
public static BEBLID __fromPtr__(long addr)
-
create
public static BEBLID create(float scale_factor, int n_bits)
Creates the BEBLID descriptor.- Parameters:
scale_factor
- Adjust the sampling window around detected keypoints:- <b> 1.00f </b> should be the scale for ORB keypoints
- <b> 6.75f </b> should be the scale for SIFT detected keypoints
- <b> 6.25f </b> is default and fits for KAZE, SURF detected keypoints
- <b> 5.00f </b> should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints
n_bits
- Determine the number of bits in the descriptor. Should be either BEBLID::SIZE_512_BITS or BEBLID::SIZE_256_BITS.
- Returns:
- automatically generated
-
-
create
public static BEBLID create(float scale_factor)
Creates the BEBLID descriptor.- Parameters:
scale_factor
- Adjust the sampling window around detected keypoints:- <b> 1.00f </b> should be the scale for ORB keypoints
- <b> 6.75f </b> should be the scale for SIFT detected keypoints
- <b> 6.25f </b> is default and fits for KAZE, SURF detected keypoints
- <b> 5.00f </b> should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints BEBLID::SIZE_512_BITS or BEBLID::SIZE_256_BITS.
- Returns:
- automatically generated
-