|  | 
| int | hal_ni_Cholesky32f (float *src1, size_t src1_step, int m, float *src2, size_t src2_step, int n, bool *info) | 
|  | 
| int | hal_ni_Cholesky64f (double *src1, size_t src1_step, int m, double *src2, size_t src2_step, int n, bool *info) | 
|  | 
Performs Cholesky decomposition of matrix \(A = L*L^T\) and solves matrix equation \(A*X=B\). 
- Parameters
- 
  
    | src1 | pointer to input matrix \(A\) stored in row major order. After finish of work src1 contains lower triangular matrix \(L\). |  | src1_step | number of bytes between two consequent rows of matrix \(A\). |  | m | size of square matrix \(A\). |  | src2 | pointer to \(M\times N\) matrix \(B\) which is the right-hand side of system \(A*X=B\). B stored in row major order. If src2 is null pointer only Cholesky decomposition will be performed. After finish of work src2 contains solution \(X\) of system \(A*X=B\). |  | src2_step | number of bytes between two consequent rows of matrix \(B\). |  | n | number of right-hand vectors in \(M\times N\) matrix \(B\). |  | info | indicates success of decomposition. If *info is false decomposition failed. |  
 
◆ hal_ni_Cholesky32f()
  
  | 
        
          | int hal_ni_Cholesky32f | ( | float * | src1, |  
          |  |  | size_t | src1_step, |  
          |  |  | int | m, |  
          |  |  | float * | src2, |  
          |  |  | size_t | src2_step, |  
          |  |  | int | n, |  
          |  |  | bool * | info |  
          |  | ) |  |  |  | inline | 
 
 
◆ hal_ni_Cholesky64f()
  
  | 
        
          | int hal_ni_Cholesky64f | ( | double * | src1, |  
          |  |  | size_t | src1_step, |  
          |  |  | int | m, |  
          |  |  | double * | src2, |  
          |  |  | size_t | src2_step, |  
          |  |  | int | n, |  
          |  |  | bool * | info |  
          |  | ) |  |  |  | inline |