A class to upscale images via convolutional neural networks. The following four models are implemented:
More...
#include <opencv2/dnn_superres.hpp>
A class to upscale images via convolutional neural networks. The following four models are implemented:
◆ DnnSuperResImpl() [1/2]
cv::dnn_superres::DnnSuperResImpl::DnnSuperResImpl |
( |
| ) |
|
◆ DnnSuperResImpl() [2/2]
cv::dnn_superres::DnnSuperResImpl::DnnSuperResImpl |
( |
const String & |
algo, |
|
|
int |
scale |
|
) |
| |
Constructor which immediately sets the desired model.
- Parameters
-
algo | String containing one of the desired models:
|
scale | Integer specifying the upscale factor |
◆ create()
Python: |
---|
| retval | = | cv.dnn_superres.DnnSuperResImpl_create( | | ) |
Empty constructor for python.
◆ getAlgorithm()
String cv::dnn_superres::DnnSuperResImpl::getAlgorithm |
( |
| ) |
|
Python: |
---|
| retval | = | cv.dnn_superres_DnnSuperResImpl.getAlgorithm( | | ) |
Returns the scale factor of the model:
- Returns
- Current algorithm.
◆ getScale()
int cv::dnn_superres::DnnSuperResImpl::getScale |
( |
| ) |
|
Python: |
---|
| retval | = | cv.dnn_superres_DnnSuperResImpl.getScale( | | ) |
Returns the scale factor of the model:
- Returns
- Current scale factor.
◆ readModel() [1/2]
void cv::dnn_superres::DnnSuperResImpl::readModel |
( |
const String & |
path | ) |
|
Python: |
---|
| None | = | cv.dnn_superres_DnnSuperResImpl.readModel( | path | ) |
Read the model from the given path.
- Parameters
-
path | Path to the model file. |
◆ readModel() [2/2]
void cv::dnn_superres::DnnSuperResImpl::readModel |
( |
const String & |
weights, |
|
|
const String & |
definition |
|
) |
| |
Python: |
---|
| None | = | cv.dnn_superres_DnnSuperResImpl.readModel( | path | ) |
Read the model from the given path.
- Parameters
-
weights | Path to the model weights file. |
definition | Path to the model definition file. |
◆ setModel()
void cv::dnn_superres::DnnSuperResImpl::setModel |
( |
const String & |
algo, |
|
|
int |
scale |
|
) |
| |
Python: |
---|
| None | = | cv.dnn_superres_DnnSuperResImpl.setModel( | algo, scale | ) |
Set desired model.
- Parameters
-
algo | String containing one of the desired models:
|
scale | Integer specifying the upscale factor |
◆ setPreferableBackend()
void cv::dnn_superres::DnnSuperResImpl::setPreferableBackend |
( |
int |
backendId | ) |
|
Python: |
---|
| None | = | cv.dnn_superres_DnnSuperResImpl.setPreferableBackend( | backendId | ) |
◆ setPreferableTarget()
void cv::dnn_superres::DnnSuperResImpl::setPreferableTarget |
( |
int |
targetId | ) |
|
Python: |
---|
| None | = | cv.dnn_superres_DnnSuperResImpl.setPreferableTarget( | targetId | ) |
◆ upsample()
Python: |
---|
| result | = | cv.dnn_superres_DnnSuperResImpl.upsample( | img[, result] | ) |
Upsample via neural network.
- Parameters
-
img | Image to upscale |
result | Destination upscaled image |
◆ upsampleMultioutput()
void cv::dnn_superres::DnnSuperResImpl::upsampleMultioutput |
( |
InputArray |
img, |
|
|
std::vector< Mat > & |
imgs_new, |
|
|
const std::vector< int > & |
scale_factors, |
|
|
const std::vector< String > & |
node_names |
|
) |
| |
Python: |
---|
| None | = | cv.dnn_superres_DnnSuperResImpl.upsampleMultioutput( | img, imgs_new, scale_factors, node_names | ) |
Upsample via neural network of multiple outputs.
- Parameters
-
img | Image to upscale |
imgs_new | Destination upscaled images |
scale_factors | Scaling factors of the output nodes |
node_names | Names of the output nodes in the neural network |
The documentation for this class was generated from the following file: