|
void | cv::rapid::drawCorrespondencies (InputOutputArray bundle, InputArray srcLocations, InputArray newLocations, InputArray colors=noArray()) |
|
void | cv::rapid::drawSearchLines (InputOutputArray img, InputArray locations, const Scalar &color) |
|
void | cv::rapid::drawWireframe (InputOutputArray img, InputArray pts2d, InputArray tris, const Scalar &color, int type=LINE_8, bool cullBackface=false) |
|
void | cv::rapid::extractControlPoints (int num, int len, InputArray pts3d, InputArray rvec, InputArray tvec, InputArray K, const Size &imsize, InputArray tris, OutputArray ctl2d, OutputArray ctl3d) |
|
void | cv::rapid::extractLineBundle (int len, InputArray ctl2d, InputArray img, OutputArray bundle, OutputArray srcLocations) |
|
void | cv::rapid::filterCorrespondencies (InputOutputArray pts2d, InputOutputArray pts3d, InputArray mask) |
|
void | cv::rapid::findCorrespondencies (InputArray bundle, InputArray srcLocations, OutputArray newLocations, OutputArray response=noArray()) |
|
float | cv::rapid::rapid (InputArray img, int num, int len, InputArray pts3d, InputArray tris, InputArray K, InputOutputArray rvec, InputOutputArray tvec) |
|
implements "RAPID-a video rate object tracker" [95] with the dynamic control point extraction of [55]
◆ drawCorrespondencies()
Python: |
---|
| bundle | = | cv.rapid.drawCorrespondencies( | bundle, srcLocations, newLocations[, colors] | ) |
#include <opencv2/rapid.hpp>
Debug draw markers of matched correspondences onto a lineBundle
- Parameters
-
bundle | the lineBundle |
srcLocations | the according source locations |
newLocations | matched source locations |
colors | colors for the markers. Defaults to white. |
◆ drawSearchLines()
Python: |
---|
| img | = | cv.rapid.drawSearchLines( | img, locations, color | ) |
#include <opencv2/rapid.hpp>
Debug draw search lines onto an image
- Parameters
-
img | the output image |
locations | the source locations of a line bundle |
color | the line color |
◆ drawWireframe()
Python: |
---|
| img | = | cv.rapid.drawWireframe( | img, pts2d, tris, color[, type[, cullBackface]] | ) |
#include <opencv2/rapid.hpp>
Draw a wireframe of a triangle mesh
- Parameters
-
img | the output image |
pts2d | the 2d points obtained by projectPoints |
tris | triangle face connectivity |
color | line color |
type | line type. See LineTypes. |
cullBackface | enable back-face culling based on CCW order |
◆ extractControlPoints()
Python: |
---|
| ctl2d, ctl3d | = | cv.rapid.extractControlPoints( | num, len, pts3d, rvec, tvec, K, imsize, tris[, ctl2d[, ctl3d]] | ) |
#include <opencv2/rapid.hpp>
Extract control points from the projected silhouette of a mesh
see [55] Sec 2.1, Step b
- Parameters
-
num | number of control points |
len | search radius (used to restrict the ROI) |
pts3d | the 3D points of the mesh |
rvec | rotation between mesh and camera |
tvec | translation between mesh and camera |
K | camera intrinsic |
imsize | size of the video frame |
tris | triangle face connectivity |
ctl2d | the 2D locations of the control points |
ctl3d | matching 3D points of the mesh |
◆ extractLineBundle()
Python: |
---|
| bundle, srcLocations | = | cv.rapid.extractLineBundle( | len, ctl2d, img[, bundle[, srcLocations]] | ) |
#include <opencv2/rapid.hpp>
Extract the line bundle from an image
- Parameters
-
len | the search radius. The bundle will have 2*len + 1 columns. |
ctl2d | the search lines will be centered at this points and orthogonal to the contour defined by them. The bundle will have as many rows. |
img | the image to read the pixel intensities values from |
bundle | line bundle image with size ctl2d.rows() x (2 * len + 1) and the same type as img |
srcLocations | the source pixel locations of bundle in img as CV_16SC2 |
◆ filterCorrespondencies()
Python: |
---|
| pts2d, pts3d | = | cv.rapid.filterCorrespondencies( | pts2d, pts3d, mask | ) |
#include <opencv2/rapid.hpp>
Filter corresponding 2d and 3d points based on mask
- Parameters
-
pts2d | 2d points |
pts3d | 3d points |
mask | mask containing non-zero values for the elements to be retained |
◆ findCorrespondencies()
Python: |
---|
| newLocations, response | = | cv.rapid.findCorrespondencies( | bundle, srcLocations[, newLocations[, response]] | ) |
#include <opencv2/rapid.hpp>
Find corresponding image locations by searching for a maximal sobel edge along the search line (a single row in the bundle)
- Parameters
-
bundle | the line bundle |
srcLocations | the according source image location |
newLocations | image locations with maximal edge along the search line |
response | the sobel response for the selected point |
◆ rapid()
Python: |
---|
| retval, rvec, tvec | = | cv.rapid.rapid( | img, num, len, pts3d, tris, K, rvec, tvec | ) |
#include <opencv2/rapid.hpp>
High level function to execute a single rapid [95] iteration
- extractControlPoints
- extractLineBundle
- findCorrespondencies
- filterCorrespondencies
- solvePnPRefineLM
- Parameters
-
img | the video frame |
num | number of search lines |
len | search line radius |
pts3d | the 3D points of the mesh |
tris | triangle face connectivity |
K | camera matrix |
rvec | rotation between mesh and camera. Input values are used as an initial solution. |
tvec | translation between mesh and camera. Input values are used as an initial solution. |
- Returns
- ratio of search lines that could be extracted and matched