Package org.opencv.dnn_superres
Class DnnSuperResImpl
- java.lang.Object
-
- org.opencv.dnn_superres.DnnSuperResImpl
-
public class DnnSuperResImpl extends java.lang.ObjectA class to upscale images via convolutional neural networks. The following four models are implemented:- edsr
- espcn
- fsrcnn
- lapsrn
-
-
Field Summary
Fields Modifier and Type Field Description protected longnativeObj
-
Constructor Summary
Constructors Modifier Constructor Description protectedDnnSuperResImpl(long addr)
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static DnnSuperResImpl__fromPtr__(long addr)static DnnSuperResImplcreate()Empty constructor for pythonprotected voidfinalize()java.lang.StringgetAlgorithm()Returns the scale factor of the model:longgetNativeObjAddr()intgetScale()Returns the scale factor of the model:voidreadModel(java.lang.String path)Read the model from the given pathvoidsetModel(java.lang.String algo, int scale)Set desired modelvoidsetPreferableBackend(int backendId)Set computation backendvoidsetPreferableTarget(int targetId)Set computation targetvoidupsample(Mat img, Mat result)Upsample via neural networkvoidupsampleMultioutput(Mat img, java.util.List<Mat> imgs_new, MatOfInt scale_factors, java.util.List<java.lang.String> node_names)Upsample via neural network of multiple outputs
-
-
-
Method Detail
-
getNativeObjAddr
public long getNativeObjAddr()
-
__fromPtr__
public static DnnSuperResImpl __fromPtr__(long addr)
-
create
public static DnnSuperResImpl create()
Empty constructor for python- Returns:
- automatically generated
-
readModel
public void readModel(java.lang.String path)
Read the model from the given path- Parameters:
path- Path to the model file.
-
setModel
public void setModel(java.lang.String algo, int scale)Set desired model- Parameters:
algo- String containing one of the desired models:- __edsr__
- __espcn__
- __fsrcnn__
- __lapsrn__
scale- Integer specifying the upscale factor
-
setPreferableBackend
public void setPreferableBackend(int backendId)
Set computation backend- Parameters:
backendId- automatically generated
-
setPreferableTarget
public void setPreferableTarget(int targetId)
Set computation target- Parameters:
targetId- automatically generated
-
upsample
public void upsample(Mat img, Mat result)
Upsample via neural network- Parameters:
img- Image to upscaleresult- Destination upscaled image
-
upsampleMultioutput
public void upsampleMultioutput(Mat img, java.util.List<Mat> imgs_new, MatOfInt scale_factors, java.util.List<java.lang.String> node_names)
Upsample via neural network of multiple outputs- Parameters:
img- Image to upscaleimgs_new- Destination upscaled imagesscale_factors- Scaling factors of the output nodesnode_names- Names of the output nodes in the neural network
-
getScale
public int getScale()
Returns the scale factor of the model:- Returns:
- Current scale factor.
-
getAlgorithm
public java.lang.String getAlgorithm()
Returns the scale factor of the model:- Returns:
- Current algorithm.
-
finalize
protected void finalize() throws java.lang.Throwable- Overrides:
finalizein classjava.lang.Object- Throws:
java.lang.Throwable
-
-