Modality that computes quantized surface normals from a dense depth map.
More...
#include <opencv2/rgbd/linemod.hpp>
Modality that computes quantized surface normals from a dense depth map.
◆ DepthNormal() [1/2]
cv::linemod::DepthNormal::DepthNormal |
( |
| ) |
|
Default constructor. Uses reasonable default parameter values.
◆ DepthNormal() [2/2]
cv::linemod::DepthNormal::DepthNormal |
( |
int |
distance_threshold, |
|
|
int |
difference_threshold, |
|
|
size_t |
num_features, |
|
|
int |
extract_threshold |
|
) |
| |
Constructor.
- Parameters
-
distance_threshold | Ignore pixels beyond this distance. |
difference_threshold | When computing normals, ignore contributions of pixels whose depth difference with the central pixel is above this threshold. |
num_features | How many features a template must contain. |
extract_threshold | Consider as candidate feature only if there are no differing orientations within a distance of extract_threshold. |
◆ create()
static Ptr< DepthNormal > cv::linemod::DepthNormal::create |
( |
int |
distance_threshold, |
|
|
int |
difference_threshold, |
|
|
size_t |
num_features, |
|
|
int |
extract_threshold |
|
) |
| |
|
static |
Python: |
---|
| cv.linemod.DepthNormal.create( | distance_threshold, difference_threshold, num_features, extract_threshold | ) -> | retval |
| cv.linemod.DepthNormal_create( | distance_threshold, difference_threshold, num_features, extract_threshold | ) -> | retval |
◆ name()
virtual String cv::linemod::DepthNormal::name |
( |
| ) |
const |
|
virtual |
◆ processImpl()
◆ read()
virtual void cv::linemod::DepthNormal::read |
( |
const FileNode & |
fn | ) |
|
|
virtual |
◆ write()
virtual void cv::linemod::DepthNormal::write |
( |
FileStorage & |
fs | ) |
const |
|
virtual |
◆ difference_threshold
int cv::linemod::DepthNormal::difference_threshold |
◆ distance_threshold
int cv::linemod::DepthNormal::distance_threshold |
◆ extract_threshold
int cv::linemod::DepthNormal::extract_threshold |
◆ num_features
size_t cv::linemod::DepthNormal::num_features |
The documentation for this class was generated from the following file: