|  | OpenCV
    4.1.1
    Open Source Computer Vision | 
| Classes | |
| class | cv::datasets::FR_adience | 
| struct | cv::datasets::FR_adienceObj | 
| class | cv::datasets::FR_lfw | 
| struct | cv::datasets::FR_lfwObj | 
| Enumerations | |
| enum | cv::datasets::genderType { cv::datasets::male = 0, cv::datasets::female, cv::datasets::none } | 
Implements loading dataset:
"Adience": http://www.openu.ac.il/home/hassner/Adience/data.html
Usage:
faces.tar.gz\aligned.tar.gz and files with splits: fold_0_data.txt-fold_4_data.txt, fold_frontal_0_data.txt-fold_frontal_4_data.txt. (For face recognition task another splits should be created)Implements loading dataset:
"Labeled Faces in the Wild": http://vis-www.cs.umass.edu/lfw/
Usage:
lfw.tgz\lfwa.tar.gz\lfw-deepfunneled.tgz\lfw-funneled.tgz and files with pairs: 10 test splits: pairs.txt and developer train split: pairsDevTrain.txt.pairs.txt and pairsDevTrain.txt in created folder.For this dataset was implemented benchmark with accuracy: 0.623833 +- 0.005223 (train split: pairsDevTrain.txt, dataset: lfwa)
To run this benchmark execute:
#include <opencv2/datasets/fr_adience.hpp>
| Enumerator | |
|---|---|
| male Python: cv.datasets.male | |
| female Python: cv.datasets.female | |
| none Python: cv.datasets.none | |
 1.8.12
 1.8.12